
NSYSU-MATH Data Structure – Spring 2024

Homework 4

 Design: Exploring the sorting algorithms

Data Preparation

In this assignment, you're tasked with exploring and implementing various sorting

algorithms. We will delve into the intricacies of sorting techniques that were introduced

during our lectures, applying them to structured data. You are free to choose between

Python and C++ for your implementations. This document outlines the resources

provided to you in the form of a zip file named HW4.zip and guides you on how to

structure your work effectively. Below is an overview of the directory structure and the

contents in the zip file:

1. Python Implementation (Py/ directory):

 ds_sort.py: This file is your primary workspace where you will develop

the sorting functions.

 benchmark.py: A template for conducting benchmark analysis.

 test.py: You can test the speed and functionality of your program here.

2. C++ Implementation (Cpp/ directory):

 ds_sort.cpp: This file is your primary workspace where you will develop

the sorting functions.

 Benchmark.cpp: A template for conducting benchmark analysis.

 main.cpp: You can test the speed and functionality of your program here.

 ds_sort.h: Header files for the sorting algorithms.

Description

You need to choose one of the variants from each category (Totally 3 algorithms should

be chosen). Implementations should be done in ds_sort.py for Python or

ds_sort.cpp for C++, with tests conducted in test.py or main.cpp, respectively.

A. Extend the bubble sort or the shell sort

1. A bubble sort can be modified to “bubble” in both directions. The first

rightward pass will shift the largest element to its correct place at the end, and

the following leftward pass will shift the smallest element to its correct place

at the beginning. The second complete pass will shift the second largest and

second smallest elements to their correct places, and so on. Implement this in

bubble_sort_bidirection()/bubbleSortBidirectional(),

ensuring it supports sorting in ascending and descending order.

https://en.wikipedia.org/wiki/Cocktail_shaker_sort

2. Improve shell sort by allowing for custom gap sequences, diverging from the

traditional halving strategy. This adaptation permits the exploration of

different gap sequences (a list or vector in descending oreder) to optimize

sorting efficiency for specific data sets. Implement this in

shell_sort_gap()/shellSortGap();, which should also support

both ascending and descending sorting.

B. Improve the selection sort or the merge sort

1. Modify selection sort to ensure stability, meaning it preserves the order of

duplicate elements as they appear in the original list. Additionally, enable the

sort to prioritize either the first or second element in a tuple. Implement this

stable version in select_sort_stable()/selectSortStable().You

need to demonstrate its stability compared to the traditional selection sort

in the report.

2. Recall that the slicing operator is 𝑂(𝑘) where 𝑘 is the size of the slice. We

will need to remove the slice operator in order to make merge sort truly

𝑂(𝑛 𝑙𝑜𝑔 𝑛). Implement this as merge_sort_noslice()/

mergeSortNoSlice();. You need to compare its performance to the merge

sort mentioned in our class and show your implementation is faster in the

report.

C. Optimize the quick sort

1. Implement the median-of-three method for selecting a pivot value as a

modification to quicksort. Implement your variant in

quick_sort_median()/quickSortMedian(). Demonstrate that it

functions correctly when handling a large sorted array, compared with

the original quicksort, which may encounter a recursion limit in the repot.

2. One way to improve quicksort is to use insertion sort for lists of short length,

referred to as the "partition limit." Implement your variant in

quick_sort_limit()/quickSortLimit(). Specifically, when the

sublist's length exceeds the limit, continue the recursion; if it is less than the

limit, switch to using insertion sort. Additionally, adjust your implementation

to select the pivot value from the middle element of the array. Show that this

method operates correctly when managing a large sorted array, unlike the

original quicksort, which could reach the recursion limit in the repot.

Finally, Conduct a comprehensive benchmark analysis for all implemented sorting

algorithms (bubble sort, shell sort, selection sort, merge sort, and quick sort) across

arrays of sizes 10, 50, 100, 200, 500, 1000, 2000, 5000, and 10000. Include tests with

sorted, inverse-sorted, and randomly sorted lists (vectors) of integers to thoroughly

evaluate performance.

https://en.wikipedia.org/wiki/Shellsort#Gap_sequences
https://en.wikipedia.org/wiki/Shellsort#Gap_sequences

Specifications

1. Be sure to follow the input and output formats specified in the template file.

2. You are allowed to use only the standard libraries of Python or C++. In addition,

feel free to refer or use the sorting algorithms from our provided code base.

3. For benchmarking purposes, you can use the sorting algorithms from our

provided code base or replace them with your implementations. Specifically, for

quicksort, you must use your own implementation developed in Category C.

4. We have supplied basic benchmark code. You can use this directly but must also

write code to generate the three types of lists (sorted, inverse-sorted, and random)

in various sizes, as well as the main program.

Deliverables

1. Deadline: 2024/5/19 (Sun.), 11:59 PM. Hand in the following two items to the

cyber universities. Please see our Facebook group for the late policy and rules.

2. Report:

 Outline your test design and observation for Categories B and C.

 Present detailed benchmark results for the five sorting algorithms, including

observations and comparisons to the Big O complexities discussed in class.

 Conclude with insights gained from this homework.

3. Program Source Files:

 Submit your source files and report according to instructions stated here.

Ensure that you follow the provided template files.

 Source File Comments: Each file must begin with three lines of comments

indicating the Author, Date, and Purpose of the program.

Grading Policy

 Function correctness: 45% (15% for each algorithms)

 Benchmark analysis: 25%

 Report and discussion: 30%.

Reference

1. https://realpython.com/sorting-algorithms-python/#the-timsort-algorithm-in-

python

2. https://github.com/diptangsu/Sorting-Algorithms

3. https://github.com/tahoe01/Sorting-Algorithms

4. https://www.angela1c.com/projects/cta_benchmarking/ctabenchmarkingproject

https://docs.python.org/3/library/index.html
https://cplusplus.com/reference/
https://github.com/phonchi/pythonds3
https://www.facebook.com/groups/938551624371183/permalink/941786817380997/
https://www.facebook.com/groups/938551624371183/permalink/953589709534041/
https://realpython.com/sorting-algorithms-python/#the-timsort-algorithm-in-python
https://realpython.com/sorting-algorithms-python/#the-timsort-algorithm-in-python
https://github.com/diptangsu/Sorting-Algorithms
https://github.com/tahoe01/Sorting-Algorithms
https://www.angela1c.com/projects/cta_benchmarking/ctabenchmarkingproject

