
NSYSU-MATH Data Structure – Spring 2024

Homework 3

 Design: Maze Solver Design Using Depth-First Search with Stack

Data Preparation

For this assignment, you will be provided with a zip file named HW3.zip, which

contains template files and public test data. Your primary objective is to implement the

search_from_stack() function within the Maze class, using either Python or C++.

Below is an overview of the directory structure and the contents in the zip file:

1. Python Implementation (Py/ directory):

 maze_stack.py: This is where you will implement your

search_from_stack() function..

 maze.py: Contains a reference implementation of the search algorithm using

recursion, for your review and understanding.

 *.txt: Includes test data files for mazes and paths.

2. C++ Implementation (Cpp/ directory):

 maze_stack.cpp: This is where you will implement your

search_from_stack() function.

 maze.cpp: Provides a reference implementation using recursion, which can

help guide your own implementation.

 *.txt: Test data files for mazes and paths.

 *.h: Header files used for graphical representations and additional

functionality.

Description

In our recent lessons, we've explored how recursive implementations can be

transformed into stack-based approaches. This assignment requires you to apply this

concept by designing a maze solver that employs depth-first search (DFS), similar to

the examples in our textbook. Unlike the examples, however, you are tasked with

utilizing a stack-based approach. The assignment is structured into three main parts as

follows:

1. Modify the maze search algorithm in maze.py (for Python) or maze.cpp (for

C++) so that the calls to search_from() follow a different order. After making

these adjustments, run the program to observe any resultant changes in behavior.

Explain the significance of call order in the algorithm's behavior and explain

whether it affects the algorithm's ability to find a path through the maze.

2. Function Implementation:

 Implement the function named search_from_stack() in the provided

template file. For Python, use maze_stack.py. For C++, use

maze_stack.cpp.

3. Discussion:

 Discuss the difference between recursion and stack implementation and their

pros and cons.

Specifications

1. Function name: search_from_stack()

2. Input: The function takes three parameters: maze, which is a custom class we

define representing the maze, and start_row, start_col, which are the

starting coordinates.

3. Output: The function should return a Boolean value to indicate whether a path

has been found. It should also return the found path from start to exit as a list or

vector of tuples/pairs, representing the row and column coordinates.

4. The maze is stored as a matrix, detailed in our textbook.

5. Use the list (in Python) or a vector (in C++) to store the found path. The

path should be a list of tuples that store the row and column coordinates as

tuples. In C++, you should use vector of pairs. (e.g. [(3,4), (3,5)….])

6. The depth-first search algorithm should be used for this implementation, following

the same order of the original recursion implementation.

7. You are allowed to use only the standard libraries of Python or C++. In addition,

use the Stack() class from our provided code base.

8. Do not focus on visualization for this assignment; your primary goal is to ensure

the correct path and Boolean value are returned. However, if you are interested,

feel free to explore the GUI code or display your path.

Usage of the programs

1. Use python .\maze.py .\maze1.txt to execute the program and run the maze

solver with the specified maze file.

2. Use python .\maze.py .\maze1.txt .\correct_path1.txt to compare

the solution generated by your program against a correct path file, verifying the

implementation's accuracy.

3. Use python .\maze.py .\maze1.txt -nogui if you wish to run the program

without the graphical user interface, suitable for environments where GUI support

is unavailable or unnecessary.

4. Ensure to add -O2 -lgdi32 flags when compiling your C++ program (pass them

to the linker) on Windows to optimize the execution and include necessary libraries

https://docs.python.org/3/library/index.html
https://cplusplus.com/reference/
https://github.com/phonchi/pythonds3

for graphics support. Ensure your GCC compiler version is above 7.0 to guarantee

compatibility with C++14 and newer versions of the STL that the CTurtle library

requires. For compilation assistance, feel free to reach out to us.

Deliverables

1. Deadline: 2024/4/28 (Sun.), 11:59 PM. Hand in the following two items to the

cyber universities. Please see our Facebook group for the late policy and rules.

2. Report:

 Modify the maze search program in maze.py (or maze.cpp for C++) so that

the calls to search_from() are in a different order. Observe the changes in

the program's behavior, explain the reasons for any differences, and discuss

the impact of call order on the algorithm's ability to find a path through the

maze.

 Describe the design of your program and the data structures you utilized.

Discuss what you have learned from completing this homework.

 Analyze the differences between recursion and stack implementation,

including their advantages and disadvantages.

3. Program Source Files:

 Submit your source files and report according to instructions stated here.

Ensure that you follow the provided template files.

 Source File Comments: Each file must begin with three lines of comments

indicating the Author, Date, and Purpose of the program. Include appropriate

comments throughout your code for clarity.

Grading Policy

 Function Correctness: 60% (36% for public test cases and 24% for hidden test

cases).

 Report and discussion: 40%.

Reference

1. https://runestone.academy/ns/books/published/pythonds3/Recursion/ExploringaM

aze.html

2. https://medium.com/swlh/solving-mazes-with-depth-first-search-e315771317ae

3. https://varsubham.medium.com/maze-path-finding-using-dfs-e9c5fa14106f

4. https://sqlpad.io/tutorial/python-maze-solver/

https://www.msys2.org/
https://github.com/walkerje/C-Turtle
https://www.facebook.com/groups/938551624371183/permalink/941786817380997/
https://www.facebook.com/groups/938551624371183/permalink/953589709534041/
https://runestone.academy/ns/books/published/pythonds3/Recursion/ExploringaMaze.html
https://runestone.academy/ns/books/published/pythonds3/Recursion/ExploringaMaze.html
https://medium.com/swlh/solving-mazes-with-depth-first-search-e315771317ae
https://varsubham.medium.com/maze-path-finding-using-dfs-e9c5fa14106f
https://sqlpad.io/tutorial/python-maze-solver/

