
NSYSU-MATH Data Structure – Spring 2024

 Homework 2

 Design: Designing a SparseMatrixLL Class

Data Preparation

For this assignment, you will find a zip file named HW2.zip containing template files

and public test data. Your task is to implement a SparseMatrixLL class in either

Python or C++. The directory structure and contents are as follows:

1. Python Implementation (Py/ directory):

 SparseMatrixLL.py: Implement your SparseMatrixLL class here.

 test.py: Contains public test cases for your implementation.

2. C++ Implementation (Cpp/ directory):

 SparseMatrixLL.cpp: Implement your SparseMatrixLL class here.

 SparseMatrixLL.h: The header file for your SparseMatrixLL class.

 main.cpp: Contains public test cases for your implementation.

Description

This assignment is divided into two main parts:

1. Class Implementation:

 Implement a new class named SparseMatrixLL in the provided template

file. For Python, use SparseMatrixLL.py. For C++, use

SparseMatrixLL.cpp and SparseMatrixLL.h.

 The specifications for the SparseMatrixLL class will be provided in the

subsequent sections.

2. Discussion:

 Discuss the difference between array and linked list and their pros and cons.

 Discuss the difference between the SparseMatrixLL, SparseMatrix

and coordinate format mentioned in our class and their pros and cons.

ADT

The ADT is defined as follows:

Polynomial ADT

Data: A list (vector) that stores each row as a linked list and in the node of each

linked list stores the column number and the actual value. Two integers that records

the number of rows and columns of matrix

Operation:

Initialize: Creates a new sparse matrix with given number of columns and rows.

Getter: Get a specific element from the matrix using row and column index: m[r,c]

(Python) or m.get(r,c) (C++)

Setter: Set a value to specific location sing row and column index: m[r,c]=v

(Python) or m.set(r,c,v) (C++)

Addition: Add two sparse matrices and return the resulting matrix.

Subtraction: Subtract one matrix from the other and return the resulting matrix.

Multiplication: Multiply two sparse matrices and return the resulting matrix.

Specifications

1. Class name: SparseMatrixLL

2. Attribute name: _row_list, _nrow, _ncolumns (They should be private)

3. Method: Constructor (nrows, ncolumns), getter, setter, +, −, × . You should

implement arithmetic operations using operator overloading. Note some custom

methods for the class is already implemented. Do not modify these methods.

4. Use the list (in Python) or a vector (in C++) to store the rows. Each row

of the matrix should be stored in a separate UnorderedList. Thus, for a

matrix with 𝒎 rows and 𝒏 columns, the matrix should be represented by

two integers _nrow, _ncolumns and 𝒎 UnorderedList.

5. The structure is below, where the data field of node is a MatrixEntry that

contains col (the index of column) and val (the actual value):

6. Please remove the item whose value is zero after operations.

7. The input values will be integers and you need to check the shape of matrix are

compatible with each other before the operations.

8. Assume that the number of nonzero elements in each input matrix is only linear in

terms of 𝑚 and 𝑛 . Your program should use at most 𝑂(𝑒) spaces for all

operations, where 𝑒 is the number of nonzero elements in a matrix. That is, you

cannot “expand” the matrix into 𝑚 × 𝑛 entries in memory.

9. You can only use the standard Python or C++ library.

Deliverables

1. Deadline: 2024/4/07 (Sun.), 11:59 PM. Hand in the following two items to the

cyber universities. Please see our Facebook group for the late policy and rules.

2. Report:

 Explain the design of your program and the data structures used. Discuss what

you have learned from completing this homework.

 Discuss the difference between array and linked list and their pros and cons.

 Discuss the difference between the SparseMatrixLL, SparseMatrix

and coordinate format mentioned in our class and their pros and cons.

3. Program Source Files:

 Submit your source files and report according to instructions stated here.

Ensure that you follow the provided template files.

 Source File Comments: Each file must begin with three lines of comments

indicating the Author, Date, and Purpose of the program. Include appropriate

comments throughout your code for clarity.

Grading Policy

 Function Correctness: 60% (45% for public test cases and 15% for hidden test

cases).

 Report and discussion: 40%.

Reference

1. https://www.geeksforgeeks.org/sparse-matrix-representation/

https://docs.python.org/3/library/index.html
https://cplusplus.com/reference/
https://www.facebook.com/groups/938551624371183/permalink/941786817380997/
https://www.facebook.com/groups/938551624371183/permalink/953589709534041/
https://www.geeksforgeeks.org/sparse-matrix-representation/

