
NSYSU-MATH Data Structure – Spring 2024

 Homework 1

 Design: Designing a Polynomial Class

Data Preparation

For this assignment, you will find a zip file named HW1.zip containing template files

and public test data. Your task is to implement a Polynomial class in either Python

or C++. The directory structure and contents are as follows:

1. Python Implementation (Py/ directory):

 Polynomial.py: Implement your Polynomial class here.

 test.py: Contains public test cases for your implementation.

 benchmark.py: A template for conducting benchmark analysis.

2. C++ Implementation (Cpp/ directory):

 Polynomial.cpp: Implement your Polynomial class here.

 Polynomial.h: The header file for your Polynomial class.

 main.cpp: Contains public test cases for your implementation.

 benchmark.cpp: A template for conducting benchmark analysis.

Description

This assignment is divided into three main parts:

1. Environment Setup:

 Choose either C++ or Python as your programming language.

 Set up your programming environment accordingly.

2. Class Implementation:

 Implement a new class named Polynomial in the provided template file.

For Python, use Polynomial.py. For C++, use Polynomial.cpp.

 The specifications for the Polynomial class will be provided in the

subsequent sections.

3. Time Complexity Analysis:

 Analyze the time complexity for the following operations in your

Polynomial class: Addition, Subtraction and Multiplication. Report the

worst-case time complexity using Big O notation.

 Use the benchmarking method introduced in class to validate your analysis.

Implement your analysis in the provided template (benchmark.py for

Python or benchmark.cpp for C++).

Note: You may assume that all basic operations on lists (or vectors in C++) have

constant time complexity for the purpose of this analysis.

ADT

Polynomial ADT

Data: A list (vector) that stores coefficients stores in descending order from left to

right. An integer that records the degree of polynomial

Operation:

1. Initialize: Creates a new polynomial that is constructed using the given

coefficients. It needs a list of coefficients and returns the polynomial.

2. Addition: Add two polynomials and return the resulting polynomial: (𝒙𝟐 +

𝟑𝒙 + 𝟐) + (𝒙 + 𝟐) = 𝒙𝟐 + 𝟒𝒙 + 𝟒

3. Subtraction: Subtract one polynomial from the other and return the resulting

polynomial: (𝒙𝟐 + 𝟑𝒙 + 𝟐) − (𝒙 + 𝟐) = 𝒙𝟐 + 𝟐𝒙

4. Multiplication: Multiply two polynomials and return the resulting polynomial:

(𝒙𝟐 + 𝟑𝒙 + 𝟐) × (𝒙 + 𝟐) = 𝟐𝒙³ + 𝟓𝒙² + 𝟖𝒙 + 𝟒

5. Negation: Negate the coefficient of a polynomial: −(𝒙𝟐 + 𝟑𝒙 + 𝟐) = −𝒙𝟐 −

𝟑𝒙 − 𝟐

Specifications

1. Class name: Polynomial

2. Attribute name: _degree, _coeff (They should be private)

3. Method: Constructor (list of coefficients), +, −, × and negation. You should

implement them using operator overloading. Note a custom print() method for

the class is already implemented. Do not modify this method.

4. Use a list (in Python) or a vector (in C++) to store the coefficients.

5. Coefficients should be stored in descending order of power (from left to right).

For a polynomial with highest power 𝒙𝒏 it will contain 𝒏 + 𝟏 terms (Input

sequences may contain leading zeros; these should be removed).

Ex: 𝟑𝒙𝟒 + 𝟐𝒙𝟑 + 𝒙𝟐 (Input will be [3,2,1,0,0] or [0,3,2,1,0,0] …)

−𝟐𝒙𝟒 + 𝒙𝟐 + 𝟎. 𝟓

𝒙 + 𝟏

6. Please combine the terms that have the same powers.

7. The input coefficients can be integers or floating-point numbers.

8. You can only use standard Python or C++ library and do not use reverse() or

[::-1] method for list and vector.

Deliverables

1. Deadline: 2024/3/17 (Sun.), 11:59 PM. Hand in the following two items to the

cyber universities. Please see our Facebook group for the late policy and rules.

2. Report:

 Describe your programming environment and provide instructions on how to

set it up.

 Explain the design of your program and the data structures used. Discuss what

you have learned from completing this homework.

 Provide a detailed analysis of the time complexity (Big O notation) and

benchmark results for the Addition, Subtraction, and Multiplication

operations in your implementation.

3. Program Source Files:

 Submit your source files in a zip file. Ensure that you follow the provided

template files.

 Source File Comments: Each file must begin with three lines of comments

indicating the Author, Date, and Purpose of the program. Include appropriate

comments throughout your code for clarity.

Grading Policy

 Function Correctness: 60% (45% for public test cases and 15% for hidden test

cases).

 Big O and Benchmark Analysis: 20%.

 Report: 20%.

Reference

1. https://python-course.eu/oop/polynomial-class.php

2. https://hplgit.github.io/primer.html/doc/pub/class/._class-readable003.html

3. https://web.ntnu.edu.tw/~algo/Polynomial.html

4. https://gist.github.com/birshert/8965693055464cb8b4e4cb16d6306fc8

https://docs.python.org/3/library/index.html
https://cplusplus.com/reference/
https://www.facebook.com/groups/938551624371183/permalink/941786817380997/
https://python-course.eu/oop/polynomial-class.php
https://hplgit.github.io/primer.html/doc/pub/class/._class-readable003.html
https://web.ntnu.edu.tw/~algo/Polynomial.html
https://gist.github.com/birshert/8965693055464cb8b4e4cb16d6306fc8

