NSXSU-MATHF Data Structure - Spring 2024

Homework 1

Design: Designing a Polynomial Class

Data Preparation

For this assignment, you will find a zip file named HW1. zip containing template files and public test data. Your task is to implement a Polynomial class in either Python or $\mathrm{C}++$. The directory structure and contents are as follows:

1. Python Implementation (Py/ directory):
\checkmark Polynomial.py: Implement your Polynomial class here.
\checkmark test.py: Contains public test cases for your implementation.
\checkmark benchmark.py: A template for conducting benchmark analysis.
2. $\mathrm{C}++$ Implementation (Cpp/ directory):
\checkmark Polynomial.cpp: Implement your Polynomial class here.
\checkmark Polynomial.h: The header file for your Polynomial class.
$\checkmark \quad$ main.cpp: Contains public test cases for your implementation.
\checkmark benchmark.cpp: A template for conducting benchmark analysis.

Description

This assignment is divided into three main parts:

1. Environment Setup:
$\checkmark \quad$ Choose either C++ or Python as your programming language.
$\checkmark \quad$ Set up your programming environment accordingly.
2. Class Implementation:
\checkmark Implement a new class named Polynomial in the provided template file. For Python, use Polynomial.py. For C++, use Polynomial.cpp.
\checkmark The specifications for the Polynomial class will be provided in the subsequent sections.
3. Time Complexity Analysis:
\checkmark Analyze the time complexity for the following operations in your Polynomial class: Addition, Subtraction and Multiplication. Report the worst-case time complexity using Big O notation.
\checkmark Use the benchmarking method introduced in class to validate your analysis. Implement your analysis in the provided template (benchmark.py for Python or benchmark.cpp for $\mathrm{C}++$).

Note: You may assume that all basic operations on lists (or vectors in $\mathrm{C}++$) have constant time complexity for the purpose of this analysis.

ADT

Polynomial ADT

Data: A list (vector) that stores coefficients stores in descending order from left to right. An integer that records the degree of polynomial

Operation:

1. Initialize: Creates a new polynomial that is constructed using the given coefficients. It needs a list of coefficients and returns the polynomial.
2. Addition: Add two polynomials and return the resulting polynomial: $\left(x^{2}+\right.$ $3 x+2)+(x+2)=x^{2}+4 x+4$
3. Subtraction: Subtract one polynomial from the other and return the resulting polynomial: $\left(x^{2}+3 x+2\right)-(x+2)=x^{2}+2 x$
4. Multiplication: Multiply two polynomials and return the resulting polynomial:
$\left(x^{2}+3 x+2\right) \times(x+2)=2 x^{3}+5 x^{2}+8 x+4$
5. Negation: Negate the coefficient of a polynomial: $-\left(x^{2}+3 x+2\right)=-x^{2}-$ $3 x-2$

Specifications

1. Class name: Polynomial
2. Attribute name: _degree, _coeff (They should be private)
3. Method: Constructor (list of coefficients),,,$+- \times$ and negation. You should implement them using operator overloading. Note a custom print() method for the class is already implemented. Do not modify this method.
4. Use a list (in Python) or a vector (in $\mathrm{C}++$) to store the coefficients.
5. Coefficients should be stored in descending order of power (from left to right). For a polynomial with highest power x^{n} it will contain $n+1$ terms (Input sequences may contain leading zeros; these should be removed).
Ex: $3 x^{4}+2 x^{3}+x^{2}$ (Input will be $[\mathbf{3 , 2 , 1 , 0 , 0}]$ or $[0,3,2,1,0,0] \ldots$)

0	1	2	3	4
3	2	1	0	0
$-\mathbf{2} \boldsymbol{x}^{4}+\boldsymbol{x}^{2}+\mathbf{0 . 5}$				
0	1	2	3	4
-2	0	1	0	0.5
$x+1$				

6. Please combine the terms that have the same powers.
7. The input coefficients can be integers or floating-point numbers.
8. You can only use standard Python or $\mathrm{C}++$ library and do not use reverse() or [::-1] method for list and vector.

Deliverables

1. Deadline: 2024/3/17 (Sun.), 11:59 PM. Hand in the following two items to the cyber universities. Please see our Facebook group for the late policy and rules.
2. Report:
\checkmark Describe your programming environment and provide instructions on how to set it up.
\checkmark Explain the design of your program and the data structures used. Discuss what you have learned from completing this homework.
$\checkmark \quad$ Provide a detailed analysis of the time complexity (Big O notation) and benchmark results for the Addition, Subtraction, and Multiplication operations in your implementation.
3. Program Source Files:
$\checkmark \quad$ Submit your source files in a zip file. Ensure that you follow the provided template files.
$\checkmark \quad$ Source File Comments: Each file must begin with three lines of comments indicating the Author, Date, and Purpose of the program. Include appropriate comments throughout your code for clarity.

Grading Policy

- Function Correctness: 60\% (45\% for public test cases and 15% for hidden test cases).
- Big O and Benchmark Analysis: 20\%.
- Report: 20%.

Reference

1. https://python-course.eu/oop/polynomial-class.php
2. https://hplgit.github.io/primer.html/doc/pub/class/._class-readable003.html
3. https://web.ntnu.edu.tw/~algo/Polynomial.html
4. https://gist.github.com/birshert/8965693055464cb8b4e4cb16d6306fc8
