
NSYSU-MATH Data Structure – Spring 2024

 Homework 1

 Design: Designing a Polynomial Class

Data Preparation

For this assignment, you will find a zip file named HW1.zip containing template files

and public test data. Your task is to implement a Polynomial class in either Python

or C++. The directory structure and contents are as follows:

1. Python Implementation (Py/ directory):

 Polynomial.py: Implement your Polynomial class here.

 test.py: Contains public test cases for your implementation.

 benchmark.py: A template for conducting benchmark analysis.

2. C++ Implementation (Cpp/ directory):

 Polynomial.cpp: Implement your Polynomial class here.

 Polynomial.h: The header file for your Polynomial class.

 main.cpp: Contains public test cases for your implementation.

 benchmark.cpp: A template for conducting benchmark analysis.

Description

This assignment is divided into three main parts:

1. Environment Setup:

 Choose either C++ or Python as your programming language.

 Set up your programming environment accordingly.

2. Class Implementation:

 Implement a new class named Polynomial in the provided template file.

For Python, use Polynomial.py. For C++, use Polynomial.cpp.

 The specifications for the Polynomial class will be provided in the

subsequent sections.

3. Time Complexity Analysis:

 Analyze the time complexity for the following operations in your

Polynomial class: Addition, Subtraction and Multiplication. Report the

worst-case time complexity using Big O notation.

 Use the benchmarking method introduced in class to validate your analysis.

Implement your analysis in the provided template (benchmark.py for

Python or benchmark.cpp for C++).

Note: You may assume that all basic operations on lists (or vectors in C++) have

constant time complexity for the purpose of this analysis.

ADT

Polynomial ADT

Data: A list (vector) that stores coefficients stores in descending order from left to

right. An integer that records the degree of polynomial

Operation:

1. Initialize: Creates a new polynomial that is constructed using the given

coefficients. It needs a list of coefficients and returns the polynomial.

2. Addition: Add two polynomials and return the resulting polynomial: (𝒙𝟐 +

𝟑𝒙 + 𝟐) + (𝒙 + 𝟐) = 𝒙𝟐 + 𝟒𝒙 + 𝟒

3. Subtraction: Subtract one polynomial from the other and return the resulting

polynomial: (𝒙𝟐 + 𝟑𝒙 + 𝟐) − (𝒙 + 𝟐) = 𝒙𝟐 + 𝟐𝒙

4. Multiplication: Multiply two polynomials and return the resulting polynomial:

(𝒙𝟐 + 𝟑𝒙 + 𝟐) × (𝒙 + 𝟐) = 𝟐𝒙³ + 𝟓𝒙² + 𝟖𝒙 + 𝟒

5. Negation: Negate the coefficient of a polynomial: −(𝒙𝟐 + 𝟑𝒙 + 𝟐) = −𝒙𝟐 −

𝟑𝒙 − 𝟐

Specifications

1. Class name: Polynomial

2. Attribute name: _degree, _coeff (They should be private)

3. Method: Constructor (list of coefficients), +, −, × and negation. You should

implement them using operator overloading. Note a custom print() method for

the class is already implemented. Do not modify this method.

4. Use a list (in Python) or a vector (in C++) to store the coefficients.

5. Coefficients should be stored in descending order of power (from left to right).

For a polynomial with highest power 𝒙𝒏 it will contain 𝒏 + 𝟏 terms (Input

sequences may contain leading zeros; these should be removed).

Ex: 𝟑𝒙𝟒 + 𝟐𝒙𝟑 + 𝒙𝟐 (Input will be [3,2,1,0,0] or [0,3,2,1,0,0] …)

−𝟐𝒙𝟒 + 𝒙𝟐 + 𝟎. 𝟓

𝒙 + 𝟏

6. Please combine the terms that have the same powers.

7. The input coefficients can be integers or floating-point numbers.

8. You can only use standard Python or C++ library and do not use reverse() or

[::-1] method for list and vector.

Deliverables

1. Deadline: 2024/3/17 (Sun.), 11:59 PM. Hand in the following two items to the

cyber universities. Please see our Facebook group for the late policy and rules.

2. Report:

 Describe your programming environment and provide instructions on how to

set it up.

 Explain the design of your program and the data structures used. Discuss what

you have learned from completing this homework.

 Provide a detailed analysis of the time complexity (Big O notation) and

benchmark results for the Addition, Subtraction, and Multiplication

operations in your implementation.

3. Program Source Files:

 Submit your source files in a zip file. Ensure that you follow the provided

template files.

 Source File Comments: Each file must begin with three lines of comments

indicating the Author, Date, and Purpose of the program. Include appropriate

comments throughout your code for clarity.

Grading Policy

 Function Correctness: 60% (45% for public test cases and 15% for hidden test

cases).

 Big O and Benchmark Analysis: 20%.

 Report: 20%.

Reference

1. https://python-course.eu/oop/polynomial-class.php

2. https://hplgit.github.io/primer.html/doc/pub/class/._class-readable003.html

3. https://web.ntnu.edu.tw/~algo/Polynomial.html

4. https://gist.github.com/birshert/8965693055464cb8b4e4cb16d6306fc8

https://docs.python.org/3/library/index.html
https://cplusplus.com/reference/
https://www.facebook.com/groups/938551624371183/permalink/941786817380997/
https://python-course.eu/oop/polynomial-class.php
https://hplgit.github.io/primer.html/doc/pub/class/._class-readable003.html
https://web.ntnu.edu.tw/~algo/Polynomial.html
https://gist.github.com/birshert/8965693055464cb8b4e4cb16d6306fc8

