ICS Assignment 2

Name: ______ ID: _____

1.	(C)When we want to store music in a computer, the audio signal must be									
	 (A) sampled only (B) coded only (C) sampled, quantized, and the coded (D) quantized only 									
2.	(A)When a fractional part is normalized, the computer stores the									
	(A) the sign, exponent, and mantissa(B) only the exponent(C) only the mantissa(D) only the sign									
3.	(D)An image can be represented in a computer using the method.									
	 (A) vector graphic only (B) bitmap graphic only (C) Excess system only (D) either bitmap or vector graphic 									
4.	. (B)A floating-point value after normalization is $(1.0101) \times 2^{-4}$. What is the value of the exponent section in the Excess-127 representation?									
	(A) 127 (B) 123 (C) 4 (D) -4									
5.	. (A)How many symbols can be represented by a bit pattern with ten bits?									
	(A) 1024 (B) 128 (C) 512 (D) 256									
6.	5. A student's grade in a course can be A, B, C, D, F, W(withdraw), or I(incomplete). How many bits are needed to represent the grade? Sol: $2^n = 7 \Rightarrow n \approx 3$ or $\log_2 7 = 2.81 \rightarrow 3$									
7.	. What steps are needed to convert audio data to a bit pattern? Sol:									
	The three steps are sampling, quantization, and encoding.									
8.	 Change the following decimal numbers to 16-bit unsigned integers. (a) 342 									
	(b) 41									
	Sol:									

- (a) $342 = 256 + 64 + 16 + 4 + 2 = (0000 \ 0001 \ 0101 \ 0110)_2$
- (b) $41 = 32 + 8 + 1 = (0000 \ 0000 \ 0010 \ 1001)_2$

- 9. The following are two's complement binary numbers. Show how to change the sign of the number.
 - (a) 11111100
 - (b) 01110111

Sol:

We change the sign of the number by applying the two's complement operation.

- (a) $11111100 \rightarrow 00000100$
- (b) $01110111 \rightarrow 10001001$
- 10. Convert the following numbers in 32-bit IEEE format.
 - (a) $-2^0 \times 1.10001$
 - (b) $+2^3 \times 1.111111$

Sol:

- 11. Answer the following questions about floating-point representations of real numbers:
 - (a) What is normalization necessary?
 - (b) After a number is normalized, what kind of information does a computer store in memory?

Sol:

- (a) Normalization is necessary to make calculations easier.
- (b) The computer stores the sign of the number, the exponent, and the mantissa.
- 12. If we use a 4-bit pattern to represent the digit 0 to 9, how many bit patterns are wasted? Sol:

 $2^4 - 10 = 6$ are wasted.

13. Here is a message in ASCII. What does it say?

01000011	01101111	01101101	01110000
01110101	01110100	01100101	01110010
00100000	01010011	01100011	01101001
01100101	01101110	01100011	01100101
00100001			

Sol:

Change binary to hexadecimal first.

01000011	01101111	01101101	01110000		$(43)_{16}$	$(6F)_{16}$	$(6D)_{16}$	$(70)_{16}$
01110101	01110100	01100101	01110010		$(75)_{16}$	$(74)_{16}$	$(65)_{16}$	$(72)_{16}$
00100000	01010011	01100011	01101001	\Rightarrow	$(20)_{16}$	$(53)_{16}$	$(63)_{16}$	$(69)_{16}$
01100101	01101110	01100011	01100101		$(65)_{16}$	$(6E)_{16}$	$(63)_{16}$	$(65)_{16}$
00100001					$(21)_{16}$			

Refer to the lecture on page 38 or textbook appendix A.

.:. Computer Science!