ICS Assignment Solution 1

Name: \qquad ID: \qquad

1. (B)In a computer, the \qquad subsystem serves as a manager of the other subsystems.
(A) ALU
(B) control unit
(C) input/output
(D) memory
2. (D)A step-by-step solution to a problem is called \qquad .
(A) a computer language
(B) hardware
(C) an operating system
(D) an algorithm
3. (A)When converting a decimal integer to base b, we repeatedly \qquad b.
(A) divide by
(B) multiply by
(C) add to
(D) subtract from
4. (B)When converting a decimal fraction to base b, we repeatedly \qquad b.
(A) divide by
(B) multiply by
(C) add to
(D) subtract from
5. (B)Which of the following represents the largest number?
(A) $(11101001)_{2}$
(B) $(\mathrm{FA})_{16}$
(C) $(342)_{8}$
(D) 246
6. Explain the octal system. Why is it called octal? What is the base in this system?

Sol:
The octal system is a positional number system that uses eight symbols to represent a number. The word octal is derived from the Latin root octo (eight) or octalis (related to eight). In the octal system, the base is 8 .
7. What is the function of the ALU subsystem in a computer?

Sol:
The arithmetic/logic unit (ALU) is where calculations and logical operations take place.
8. In a positional number system with base b, the largest integer number that can be respected using K digits is $b^{K}-1$. Find the largest number in each of the following systems with six digits:
(a) Binary
(b) Decimal
(c) Hexadecimal
(d) Octal

Sol:

(a) binary: $2^{6}-1=63$
(b) decimal: $10^{6}-1=999,999$
(c) hexadecimal: $16^{6}-1=16,777,215$
(d) octal: $8^{6}-1=262,143$
9. Convert the following numbers to decimal without using a calculator, showing your work:
(a) $(35 \mathrm{E} . \mathrm{E} 1)_{16}$
(b) $(2731)_{8}$
(c) $(011110.01)_{2}$

Sol:
(a) $(35 \text { E.E1) })_{16}=3 \times 16^{2}+5 \times 16+14 \times 1+14 \times \frac{1}{16}^{2}+1 \times\left(\frac{1}{16}^{2}\right)=862.879$
(b) $(2731)_{8}=2 \times 8^{3}+7 \times 8^{2}+3 \times 8+1 \times 1=1497$
(c) $(011110.01)_{2}=1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2+0 \times 1+0 \times \frac{1}{2}+1 \times\left(\frac{1}{2}\right)^{2}=30.25$
10. A number less than b^{K} can be represented using K digits in base b. Show the number of digits needed in each of the following cases.
(a) Integers less than 2^{14} in binary
(b) Integers less than 10^{8} in decimal
(c) Integers less than 8^{13} in hexadecimal
(d) Integers less than 16^{4} in octal

Sol:
(a) 14
(b) 8
(c) $\log _{16} 8^{13}=\frac{39}{4}=9 \ldots$

Hence $K=10$
(d) $\log _{8} 16^{4}=\frac{16}{3}=5 \ldots$

Hence $K=6$

