1. (24%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} n e^{-n^{2}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (\sqrt{n})}{n^{\frac{3}{2}}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 n^{2}}{n^{3}+3}$
(d) $\sum_{n=1}^{\infty}\left(\frac{n+1}{n}\right)^{n^{2}}$

Ans:

(a) Since $\left(n e^{-n^{2}}\right)^{\prime}=\left(1-2 n^{2}\right) e^{-n^{2}}<0$ which is decreasing and $\lim _{n \rightarrow \infty} n e^{-n^{2}}=0$ (exponential is much faster). Therefore, by the alternating series test $\sum_{n=1}^{\infty}(-1)^{n+1} n e^{-n^{2}}$ converges.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} n e^{-n^{2}}=\sum_{n=1}^{\infty}\left|n e^{-n^{2}}\right|=\sum_{n=1}^{\infty} n e^{-n^{2}}
$$

Let $f(\mathrm{x})=x e^{-x^{2}}, f^{\prime}(x)=\left(1-2 x^{2}\right) e^{-x^{2}}<0$ for $\mathrm{x} \geq 1 . f$ is positive, continuous and decreasing for $\mathrm{x} \geq 1$

$$
\int_{1}^{\infty} x e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \frac{1}{2} \int_{-b^{2}}^{-1} e^{u} d u
$$

(Let $\left.u=-x^{2}, d u=-2 x d x\right)=\frac{1}{2} e^{-1}$ which is converge
Therefore, $\sum_{n=1}^{\infty}(-1)^{n+1} n e^{-n^{2}}$ is absolute converges
(b) $\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{\sin (\sqrt{n})}{n^{\frac{3}{2}}}\right|=\sum_{n=1}^{\infty} \frac{\sin (\sqrt{n})}{n^{\frac{3}{2}}}$

Since $\frac{\sin (\sqrt{n})}{n^{\frac{3}{2}}}<\frac{1}{n^{\frac{3}{2}}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ is a p-series with $\mathrm{p}>1$ which is converge.
By comparison test, $\sum_{n=1}^{\infty} \frac{\sin (\sqrt{n})}{n^{\frac{3}{2}}}$ is converge.
Therefore, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (\sqrt{n})}{n^{\frac{3}{2}}}$ is absolute converge.
(c) $\left(\frac{2 n^{2}}{n^{3}+3}\right)^{\prime}=\frac{-2 n^{4}+12 n}{\left(n^{3}+3\right)^{2}}<0$ for $\mathrm{n} \geq 2$, and $\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{3}+3}=0$. Therefore, by the
alternating series test $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{2 n^{2}}{n^{3}+3}$ converges. So is $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 n^{2}}{n^{3}+3}$
(Since finite term does not affect the convergence or divergence)

$$
\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{2 n^{2}}{n^{3}+3}\right|=\sum_{n=1}^{\infty} \frac{2 n^{2}}{n^{3}+3}
$$

Since $\lim _{n \rightarrow \infty} \frac{\frac{2 n^{2}}{n^{3}+3}}{\frac{1}{n}}=2$ and since $\sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series with $\mathrm{p} \leq 1$ which is diverge. By the limit comparison test, $\sum_{n=1}^{\infty} \frac{2 n^{2}}{n^{3}+3}$ is diverge.

Therefore, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 n^{2}}{n^{3}+3}$ is conditionally converge.
(d) $\sum_{n=1}^{\infty} \sqrt[n]{\left(\frac{n+1}{n}\right)^{n^{2}}}=\sum_{n=1}^{\infty}\left(\frac{n+1}{n}\right)^{n}=e>1$ which is diverge.
2. (16%) Find the interval of convergence of the power series (Be sure to check the for the convergence at the endpoints of the intervals)
(a) $\sum_{n=1}^{\infty} \frac{n}{n+1} \frac{(x)^{n}}{(2 x+1)^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n!(x+1)^{n}}{3^{n}}$

Ans:
(a) $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)}{(n+2)}\left(\frac{x}{2 x+1}\right)^{n+1}}{\frac{n}{(n+1)}\left(\frac{x}{2 x+1}\right)^{n}}\right|=\left|\frac{x}{2 x+1}\right|$ By the ratio test, the series converges
for $\left|\frac{x}{2 x+1}\right|<1$
When $\frac{x}{2 x+1}<1 \rightarrow x>\frac{-1}{2}$ or $\mathrm{x}<-1$
When $\frac{x}{2 x+1}>-1 \rightarrow x>\frac{-1}{3}$ or $\mathrm{x}<\frac{-2}{3}$
The intersection is $x>\frac{-1}{3}$ and $\mathrm{x}<-1$
When $\mathrm{x}=\frac{-1}{3}: \sum_{n=1}^{\infty} \frac{n}{n+1}(-1)^{n}$ is diverge by the n -th term test for divergence since $\lim _{n \rightarrow \infty} \frac{n}{n+1}(-1)^{n} \neq 0$

When $\mathrm{x}=-1: \sum_{n=1}^{\infty} \frac{n}{n+1}$ is diverge by the n -th term test for divergence since
$\lim _{n \rightarrow \infty} \frac{n}{n+1} \neq 0$
So the interval of convergence is $x>\frac{-1}{3}$ and $\mathrm{x}<-1$
(b) $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)!(x+1)^{n+1}}{3^{n+1}}}{\frac{n!(x+1)^{n}}{3^{n}}}\right|=|x+1| \lim _{n \rightarrow \infty} \frac{n+1}{3}=\infty$. which implies that the series converges only at the center -1 .
3. (10%) Let $f(x)=\sqrt{1+x}+\sqrt{1-x}$, what is $f^{(10)}(0)=$?

Ans:

$$
\begin{gathered}
f(x)=1+\frac{1}{2} x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!} x^{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!} x^{3}+\cdots . .+1-\frac{1}{2} x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!} x^{2} \\
-\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!} x^{3}+\cdots=f(0)+f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(x) x^{2}+\cdots \\
f^{(10)}(0)=2\left(\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{17}{2}\right)\right)
\end{gathered}
$$

4. (18%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function)
(a) $\sum_{n=0}^{\infty} \frac{3^{n+1}}{n!}$
(b) $\frac{1}{1 \times 2}-\frac{1}{2 \times 2^{2}}+\frac{1}{3 \times 2^{3}}-\frac{1}{4 \times 2^{4}}+\ldots$
(c) $\lim _{x \rightarrow 0^{+}} \frac{\arctan (2 x)-\sin (2 x)}{\sin x-x}$

Ans:

(a) Since $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \mathrm{x} e^{x}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$

$$
\sum_{n=0}^{\infty} \frac{3^{n+1}}{n!}=3 e^{3}
$$

(b) $\frac{1}{1 \times 2}-\frac{1}{2 \times 2^{2}}+\frac{1}{3 \times 2^{3}}-\frac{1}{4 \times 2^{4}}+\ldots .=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}\left(\frac{1}{2}\right)^{n+1}=\ln \left(1+\frac{1}{2}\right)=\ln \frac{3}{2}$
(c) $\lim _{x \rightarrow 0^{+}} \frac{\arctan (2 x)-\sin (2 x)}{\sin x-x}=\lim _{x \rightarrow 0^{+}} \frac{\left(2 x-\frac{1}{3}(2 x)^{3}+\cdots\right)-\left(2 x-\frac{1}{3!}(2 x)^{3}+\cdots\right)}{\left(x-\frac{1}{3!} x^{3}+\cdots\right)-x}=\lim _{x \rightarrow 0^{+}} \frac{-\frac{8}{6}}{-\frac{1}{6}}=8$
5. (12%) Derive the Maclaurin series of $f(x)=\operatorname{arccot}(2 x)$

Ans:

$$
\begin{gathered}
(\operatorname{arccot}(x))^{\prime}=\frac{-1}{1+x^{2}}=\frac{-1}{1-\left(-x^{2}\right)}=-\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n+1} x^{2 n}|x|<1 \\
\operatorname{arccot}(x)=C+\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n+1}}{2 n+1}
\end{gathered}
$$

Substitute $x=0$, we get, $\mathrm{C}=\frac{\pi}{2}$

$$
\begin{gathered}
\operatorname{arccot}(x)=\frac{\pi}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n+1}}{2 n+1} \\
\operatorname{arccot}(2 x)=\frac{\pi}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(2 x)^{2 n+1}}{2 n+1}=\frac{\pi}{2}-2 x+\frac{8 x^{3}}{3}-\frac{32 x^{5}}{5}+\cdots .
\end{gathered}
$$

6. (10%) Find the area of the shaded region bounded by the curves $r=1+\sin (\theta)$ and $r=3 \sin (\theta)$

Ans:

Solve $r=3 \sin (\theta)$ and $r=1+\sin (\theta)$ we get $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$

$$
\begin{aligned}
& A=2 \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left[(3 \sin (\theta))^{2}-(1+\sin (\theta))^{2}\right] d \theta=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left[8 \sin ^{2} \theta-1-2 \sin \theta\right] d \theta \\
&=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left[8 \frac{1-\cos (2 \theta)}{2}-1-2 \sin \theta\right] d \theta \\
&\left.=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}[3-4 \cos (2 \theta)-2 \sin (\theta)] d \theta=3 \theta-2 \sin (2 \theta)+2 \cos (\theta)\right]_{\frac{\pi}{2}}^{\frac{\pi}{6}} \\
&=\pi
\end{aligned}
$$

7. (10\%) Find the area of the surface formed by revolving the polar graph $r=$ $2(1+\sin (\theta))$ about the $\theta=\frac{\pi}{2}$ over the interval $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$

Ans:

$$
\begin{gathered}
\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}=\sqrt{4(1+\sin \theta)^{2}+4 \cos ^{2} \theta}=2 \sqrt{2} \sqrt{1+\sin \theta} \\
S=2 \pi \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} 2(1+\sin (\theta)) \cos (\theta) 2 \sqrt{2} \sqrt{1+\sin \theta} d \theta \\
=8 \sqrt{2} \pi \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(1+\sin (\theta))^{\frac{3}{2}} \cos (\theta)(\text { Let } u=1+\sin (\theta), d u \\
=\cos (\theta) d \theta)=8 \sqrt{2} \pi \int_{0}^{2}(u)^{\frac{3}{2}} d u=\frac{16 \sqrt{2} \pi}{5}\left[u^{\frac{5}{2}}\right]_{0}^{2}=\frac{128 \pi}{5}
\end{gathered}
$$

