1.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}=\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{2}\right)^{n}} \\
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(n!)}{\left(n^{2}\right)^{n}}}=\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}=\infty
\end{gathered}
$$

Therefore, by the Root Test, the series diverges.
2.
$\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+2 /\left[(n+2) 4^{n+2}\right]}}{(x-3)^{n+1 /\left[(n+1) 4^{n+1]}\right.}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-3)(n+1)}{4(n+2)}\right|=\lim _{n \rightarrow \infty}\left|\frac{x-3}{4}\right|$
$R=4$
Interval: $-1<x<7$
When $x=7, \sum_{n=0}^{\infty} \frac{4^{n+1}}{(n+1) 4^{n+1}}=\sum_{n=0}^{\infty} \frac{1}{n+1}$ diverges
When $x=-1, \sum_{n=0}^{\infty} \frac{(-4)^{n+1}}{(n+1) 4^{n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1}$ converges
Therefore,the interval of convergence is $[-1,7)$

