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MULTIPLE INTEGRATION

14.1 Summary

Section 14.1 Iterated integrals and area in the plane......... 1

1. lterated integrals

y)

:ii = fha(y),y)=f(mly),y)  With resy

f fg;:vydx—f(:v,y)‘ Y
; F(, ga())—f(a, g1(x)  With resp

go(x

2) fg‘gif) fylz,y) dy = f(z,y) |

g1(x
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2. Area of a region in the plane

1. If R is defined by a < z < b and gi(z) < y < go(x), where g1 and

g9 are continuous on |a, b, then the area of R is given by

/ / dy dz. Figure 77 (vertically simple)
g1(

2.1f R is defined by ¢ <y < d and h{(y) < z < ho(y), where hy and

ho are continuous on |c, d|, then the area of R is given by

/ / dz dy. Figure 7?7 (horizontally simple)
hi(
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3. Double integral If f defined on a closed, bounded region R in the
ry-plane, then the double integral (=% 41%") of f over R is given by

//}{f(iﬁ,y)dA— \Ah\&ozf%yz

provided the limit exists. If the limit exists, then fis over R......... 9

4. Volume of a solid region (28 E ¥ 4847) If f is integrable over

a plane region R and f(x,y) > 0 for all (x,y) in R, then the volume of
the solid region that lies above R and below the graph of f defined as

V=[] faaa
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continuous over a closed, bounded plane region R, and let ¢ be a con-

stant.

(a) [fpef(z,y)dA=c [[p fz,y)dA

(b)ffR (z,y) £ g(x,y)]dA = ffR :cydAifngxydA

() [fp flz,y)dA >0, if f(z,y) >0

(d) [Jp f(z,y)dA = [[pa(z,y)dA, if f(z,y) > glz,y)

(e) JJg flx.y)dA = [[g flz.y)dA+ [[g f(z,y)dA, where R is the

union of two nonoverlapping subregions R{ and R».

6. Fubini’'s Theorem (g EE #) Let f be continuous on a plane

region R.
(a) If R is defined by a <z < b and g1(z) < y < go(x), where g1 and
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g9 are continuous on |a, b|, then

//fxydA /b/f2 F(z, ) dyda.

(b) If R is defined by ¢ <y < d and hi(y) < z < ho(y), where hy and

ho are continuous on |c, d], then

7. The average value of a function over a region If f isintegrable

over the plane region R, then the average value (-F-#314) of f over R

%//Rf(w,y)dfl

IS
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where Aisthe areaof R. ... ... ... . . . . . . . . . . .. 14
Section 14.3 Change of variables: Polar coordinates........ 15
8. Change of variables to polar form Let R be a plane region

consisting of all points (x,y) = (r cos @, rsin #) satisfying the conditions
0<gi1(0) <r<g0), a <0< where) < (8—a) <2m If g

and g9 are continuous on |«, §] and f is continuous on R, then

B rga(0)
// flx,y)dA =/ / f(rcosf,rsin@)rdrdf.
R a Jgi(0)

................................................................. 17
Section 14.4 Center of mass and moments of inertia ....... 19
9. Mass of a planar lamina of variable density If pis a continuous

density function on the lamina corresponding to a plane region R, then
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the mass m of the lamina (# /i) is given by

m = // p(x,y)dA.  Variable density
R

10. Moments and center of mass of a variable density planar lamina
Let p be a continuous density function on the planar lamina R. The

moments of mass (' 4E) with respect to the z- and y-axes are

Mx—//ypxydA and My—//:z:pxy

If m is the mass of the lamina, then the center of mass (H %) is

(T,7) = (My,Mm) .

mom

If R represents a simple plane region rather than a lamina, the point
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(7,y) is called the centroid (# ) of the region................... 22

11. Suppose a planar lamina is revolving about a line with an angular speed

(A2 JE) of w radians per second. The kinetic energy E' of the revolving

lamina is

1 .. : :
b= §]w2. Kinetic energy for rotational motion

12. On the other hand, the kinetic energy E of a mass m moving in a straight

line at a velocity v is

1 S : :
b = émvz. Kinetic energy for linear motion

The radius of gyration (7% F4%) T of a revolving mass m with mo-
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ment of inertia [ is defined as

_ 1
r=1\/—. Radius of gyration
m
................................................................. 25
Section 14.5 Surface area........... ... ... .. . .. .. ... .. 25

13. Surface area (@ @47)]  If f and its partial derivatives are contin-

uous on the closed region R in the xy-plane, then the area of the surface

S given by z = ) over R is defined as

Surface area—// 1S = // V1+ el )2 + [fylo, )] dA.
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14. Triple integral If { is continuous over a bounded solid region (),
then the triple integral (=% 47%") of f over @) is defined as

///Qﬂx,y,z)dV— thn;OZf i i )

#247) of the solid region Q) is

provided the limit exists. The volume (

given by

15. Evaluation by iterated integrals Let f be continuous on a solid

region () defined by

a<x<b hiz)<y<hy(x), gi(z,y)<z<goz,y)
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where h{, h9, g1, and g9 are continuous functions. Then,

// flay 2)dV = //h /91517,9 flz,y,2)dzdydz.

16. The center of mass (%) of a solid region () of mass m is given by

(Z,y, Z), where
m = /// p(r,y, 2 dVMyz—///xp:cy, dVMa;z—///yp
a_j:Myz’ ﬂ:sz, Z:Mxy
m m m

17. The second moments (% —=4E) (or moments of inertia ({H1E4E))
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about the x-, y-, and z-axes are as follows.

]x:///Q(szer),O(%va)dV’ I :///Q(xQJer)p(az,y,z)dV, I :t

where Iy, I, and I, are as follows.

e s o [

18. The rectangular conversion equations for cylindrical coordinates (Bl 4£ 4 4%




CHAPTER 14. MULTIPLE INTEGRATION 13

dare

x =r1rcosf y = rsinb z = Z.

19. Triple integral in cylindrical coordinates: If R is r-simple, the

iterated form of the triple integral in cylindrical form is

6 ho(r cos @,rsin 0)
// flx,y,z)dV :/ / / f(rcos@,rsind, z)rdz
Q 01 Jgi1(0 hi(r cos6,rsin )

20. The rectangular conversion equations for spherical coordinates are

x = psin ¢ cos b Yy = psingsinf 2 = pCos ¢.
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21. Triple integral in spherical coordinates: Using the usual process
involving an inner partition, summation, and a limit, you can develop
the following version of a triple integral in spherical coordinates for a

continuous function f defined on the solid region ().

//Qf(:z:,y,z)dv—/e /d) 3 " Fpsin ¢ cos, psin ¢ sin 0, peos §)p*s

Section 14.8 Change of variables: Jacobians................. 43

22. Jacobian If + = g(u,v) and y = h(u,v), then the Jacobian
(T k) of = and y with respect to u and v, denoted by d(x, y)/0(u, v),




CHAPTER 14. MULTIPLE INTEGRATION 15

> Oxr Ox
0@,Y) _ |gu qu|_ 9r0y _9yox
O(u,v) |9 Y|  Oudv Oudv

ou Ov

23. Change of variables for double integrals Let R be a vertically
or horizontally simple region in the zy-plane, and let S be a vertically or
horizontally simple region in the uv-plane. Let 7" from S to R be given
by T'(u,v) = (x,y) = (9(u,v), h(u,v)), where g and h have continuous
first partial derivatives. Assume that 7' is one-to-one except possibly

on the boundary of S. If f is continuous on R, and O(x,y)/0(u,v) is
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nonzero on .S, then

24. Gram determinant: It x; = x;(ty,...,tm), 0 =1, 2, ..., n,
then the Gram determinant (#3:%347 %|3\) of (1, z9, ..., xy) with
respect to (t1,...,tm) is

G=det X1 X
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_8$1 a$1 8m1

Oty Ot %
8332 8:1:2 8332

where X = 0(xq,x9,...,xn)/0(t1,t2, ..., tm) = | Ot1 Ot9 % .

Oy Oy 0o

48
25. Cauchy-Binet Formula (#T#&-b A3,):  Let A be an m X n ma-

trix and B an n X m matrix. Then the determinant of their product

(' = AB can be written as a sum of products of minors of A and B:

1 2 ... Iy ko vn k
O] = 3 A A R
ki ko -+ km 1 2 ... m

1<ki<ko<---<km<n
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26. Change of variables for multiple integrals: Let () be an m-

dimensional region in R"”, m < n, and let 7 be an m-dimensional
region in R". Let T from 7 to () be given by T'(t1,%9,...,tm) =

($1<t17 t27 ct 7tm)7 332<t1, t27 st 7tm)7 Cet 73377/(?517 t27 st 7tm)>' Where gi,s

have continuous first partial derivatives. Assume that I is one-to-one
except possibly on the boundary of 7. If f is continuous on €2, and G

is nonzero on 7, then

[ [ Somv = [ [ Sttt

27. Volume of an m-dimensional region in R", m <n: Let ) be

an m-dimensional region in R", m <n, and let 7 be an m-dimensional
region in R, Let T from 7 to ) be given by T'(t1,t9,...,tm) =
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(x1(t1,t9, ..., tm), xo(t1,to, ... tm), ..., xn(t1, to, ..., tm)), where g;'s
have continuous first partial derivatives. Assume that I is one-to-one

except possibly on the boundary of 7 and GG is nonzero on 7. Then the

volume of € is

/"'/de—/'“/T\/adtm“'dtl-
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INDEX
angular speed Ak Jx, of mass H &
area AR of a solid region () L% B3k Q,

of the surface S sh@ S, 9

average value of a function RE#F centroid M

3948 of a simple region ¥ &b 3%,
over a region I £—EX R, change of variables & # &

Cauchy-Binet Formula #7 -t A 2 for double integrals —E& A%, |15
A, 17 for multiple integrals % €44, [18

center P to polar form #& & 4%, g
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using a Gram determinant #& 424 function(s) F#

1771, 16 average value of “F 344,
using a Jacobian HE" ik, |14 density &, 6
double integral =% 44, Gram determinant #& 324847 7| &, |16
change of variables for & ¥ & #%, gyration, radius of & » ¥4& 0
15
of f over R f £B 3R, integrable function T A& & #,
properties of ', integrable <] #4749,

integral(s) a4
double =,
triple =&, [10

Fubini's Theorem ‘g ¥t R.5& 32, iterated integral & XA 9

evaluation 3t &

by iterated integrals #% X454, 10

x A\

for a triple integral =& 484, (10|  evaluation by 33, |10
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Jacobian HET 1, (14 moment(s) 4E
of inertia TH M, 12

m-dimensional region in n-dimensional

space n 4 m 4T B second #»—, [12
volume of ¢4 |18 moments of inertia TP 4E |11
21X,

multiple integral % E454-
mass ‘& & P gral >

change of variables for & # % #,
16

center of P&
of a solid region ) L8 E 3% (),
11

moments of & 4E,

of a planar lamina of variable den-
sity IF3 49 - FaRE R, 6

moment(s) 14 properties EH
of mass & &, of double integrals =& 484",

n 4%+ m 4 -F &3 m-dimensional
region in n-dimensional space

4% volume of, [18
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radius F4&
of gyration 7&4%,

region in the plane v B 3%
area of @#4,

second moments F—2%E, 11
surface area ¥ @ @Ax

of a solid =5¥ |9
triple integral =& 44, [10

in cylindrical coordinates [l 4 2

%, 13
in spherical coordinates 3K 4 4%,

14

A,

volume of a solid region
10

. center
W% of mass

Bk Q of a solid region @,

=¥ 4% double integral,

f Z£EIRR of f over R,

PEH properties of,

% B % ¥ change of variables for,
15

volume of a solid region %% B3 %8 774 moment(s)
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"+ of mass, F42 radius
=@ A4 triple integral, [10 # ¥ of gyration, 9

KA AZ in spherical coordinates, 14 % #4784~ multiple integral
[B] A= 2 4% in cylindrical coordinates, % & % # change of variables for,

3 16
[ 42 2% 3 integrable function, W d @ AR surface area
T 4764 integrable, 2.8 of a solid, 9
F @ & 3% region in the plane 743 centroid
@A area of, ¥ 4B 3% of a simple region,
BB R B A volume of a solid re- AiRJZ angular speed,
gion, [3 % function(s)
s B B A% volume of a solid region, -“F3394& average value of,

10 % & density, 0]
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% B 6 F 315 average value of a 5= second, [12

function ¥ of inertia, |12
f££—E 3% R over a region R, =¥ - F4& gyration, radius of, |9
M properties % —4%E second moments, [11

—F 44 of double integrals, %R Aa5 iterated integral

# -t )} A X, Cauchy-Binet For- 3t evaluation by, [10

mula, 17 % R Fubini's Theorem,
#H 3 evaluation =& 4a4 for a triple integral, [10
% XAE45 by iterated integrals, 100 # T b Jacobian, [14
®mAF area 18 M4 moments of inertia, |11
wdm S of the surface S, 9 W ¥ mass

#3247 2\, Gram determinant, 16| P+ center of
4 moment(s) B Q of a solid region Q,
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26

EH G FaKREFEB of a planar

lamina of variable density, [0

# #2 moments of,

ﬁi I\

=F triple,

integral(s)
—F double,

10

% % # change of variables

— &4 for double integrals,

% F 4549 for multiple integrals,

15

18

A& 354347 5 5\, using a Gram deter-

minant, |10

HET L using a Jacobian,

14

# 4 AE to polar form, 6
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