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e 13

FUNCTIONS OF SEVERAL VARIABLES

13.1 Summary

Section 13.1 Introduction to functions of several variables .. 3

1. A function of two variables Let D be a set of ordered pairs
of real numbers. If to each ordered pair (z,y) in D there corresponds

a unique real number f(x,y), then f is called a function (#3¥) of x

and y. The set D is the domain (€ &3%) of f, and the corresponding
set of values for f(x,y) is the range (4&3%) of f. .................. 5
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2. A scalar field can be characterized by level curves (3F &%) (or contour lines

(k’:.—‘—

F =5144)) along which the value of f(x,y) is constant. ........... 14

3. If f is a function of three variables and c is a constant, the graph of the

equation f(x,y,z) = cis a level surface (4= ¢h @) of the function

Section 13.2 Limits and continuity ........................... 33

4. Limit of a function of two variables Let f be a function of two
variables defined, except possible at (xg,7g), on an open disk centered
at (xg, o), and let L be a real number. Then

| ) =L
(Jfay)—lf&o,yo) floy)
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if for each ¢ there corresponds a 0 > 0 such that

|f(x,y) — L| <& whenever 0 < \/(:1: —20)* + (y — yp)? < 0.

5. Continuity of a function of two variables A function f of two

variables is continuous at a point (zg,yg) (£ (z,y)) L&)

at a point (zq,yp) in an open region R if f(xq,yo) is equal to the limit
of f(x,y) as (x,y) approaches (xq,yg). That is,
lim  f(x,y) = f(xo,y0).
()= (20,y0)
The function f is continuous in the open region R (£ E3 R &£k 4

iIf it is continuous at every pointin R.............................. 54

6. Continuity of a function of two variables If k£ is a real number
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and f and ¢ are continuous at (x(, %), then the following function are

continuous at (zq, yp).
1. Scalar multiple: £ f 2. Product: fg

3. Sum and difference: f + g 4. Quotient: /g, if g(xg,yg) # 0.

55

7. Continuity of a compaosite function  If & is continuous at (x(, y0)
and g is continuous at h(x, yp), then the composite function (& % ¥ )

given by (g o h)(z,y) = g(h(x,y)) is continuous (E£%) at (xq,yp).
That is,

lim  g(h(z,y)) = g(h(zo, yo)).
(z,y)—(T0,%0)

8. Continuity of a function of three variables A function f of

three variable is continuous at a point (z, v, 20) (£—% (20, y0, 20) &3
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in an open region R if f(xq,yo, 20) is defined and is equal to the limit
of f(x,y,2) as (z,y, z) approaches (x(, 4o, zg). That is,
lim f(z,y,2) = f(xo,y0, 20)-
(@,y,2)—=(20,90,%0)

The function f is continuous in the open region R (M E3R R &% &

iIf it is continuous at every pointin R.............................. 62
Section 13.3 Partial derivatives . ................ ... ... .. .. .. .. 63
0. Partial derivatives of a function of two variables If 2 =

f(x,y), then the first partial derivatives (5 —I% £ &) of f with
respect to x and y are the functions f; and f defined by

, x+ Az, y) — f(x, ,
St = Jim P i) =

flz,y+
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provided the limits exist. ....... ... ... ... . .. ... ... 65

10. Notation for first partial derivatives For z = f(x,y), the partial

derivatives f; and f; are denoted by
0 0z 0 0z
%f(x,y):fx(x,y)zzx:% and a_yf(gjay>:fy(xvy):zy:a_y

The first partials evaluated at the point (a, b) are denoted by

0z 0z
— = fr(a,b d — — . b).
I b f (a ) an y fy(a )

11. The concept of a partial derivative can be extended naturally to functions

of three or more variables. If w = f(x,y, z), there are three partial deriv-
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atives, each of which is formed by holding two of the variables constant.

aw_ IRT f($+A$,y,Z>—f<$,y,Z>
ax — fl“(*r)ya Z) o Alzérg() AZE
ow o flry+ Ay z) = f(r,y, 2)
ay — fy(xayaz) o Alérgo Ay
ow flz,y, 2+ Az) = f(z,y,2)

p— p— 1.
82 fz(xaya Z) A;rgo AZ

12. Equality of mixed partial derivatives (%451 % #1125 X)

If / is a function of = and y such that f; and fy; are continuous on

an open disk R, then, for every (x,y) in R,



13.1. SUMMARY 3

Section 13.4 Differentials ................ .. ... .. ... .. ... .. .... 84

13. Total differential If z = f(x,y) and Az and Ay are increments of
x and y, then the differentials (#%") of the independent variables x

and y are
de =Axz and dy = Ay

and the total differential (&%) of the dependent variable 2 is

0z 0z

14. Differentiability A function f given by z = f(x,y) is differentiable
((T 4% 9) at (xq,yo) if Az can be written in the form

Az = fo(xo, y0) Az + fy(x0, o)Ay + €1Az + e9Ay
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where both €; and €9 — 0 as (Az, Ay) — (0,0). The function f is
differentiable in a region R (Z£E3 R E-TH#4)) if it is differen-
tiable at each pointin R. ... ... ... . . ... ... L. 89

15. Sufficient condition for differentiability If f is a function of x

and y, where f; and fy are continuous in an open region R, then j is
differentiable on R. ... ... ... . . . 92

16. A function of three variables w = f(x,y,2) is called differentiable
((T 4% 49) at (x,y, z) provided that

Aw = f(z + Az,y + Ay, 2z + Az) — f(z,9,2)
can be written in the form

Aw = fo Az + fy Ay + f Az + e Az + 9 Ay + e3 Az
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where €1, €9, and €3 — 0 as (Az, Ay, Az) — (0,0,0). ............ 98

17. Sufficient condition for differentiability If f is a function of x,

y, and z, where f, fy, fy, and [, are continuous in an open region R,

then f is differentiableon R..... ... ... ... ... ... ... ... ... ... ... 100
18. Differentiability implies continuity (7T #PEES 438 &) If a
function of x and y is differentiable at (x(,yg), then it is continuous
AL (05 Y0) -+ v e et ettt 102

Section 13.5 Chain Rules for functions of several variables 106

19. Chain Rule: one independent variable (& 84 : — B3 3 & #)
Let w = f(x,y), where f is a differentiable function of x and y. If

r = g(t) and y = h(t), where g and h are differentiable functions of ¢,
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then w is a differentiable function of ¢, and
dw Owdzx (9w dy
At ox dt Ay dt

................................................................ 108
20. If each z; is a differentiable function of a single variable ¢, then for
w = f(x1,72,...,Tn)
you have
d_w - Ow d:l:l Ow dxs P ow dxy,
dt  Oxp dt &EQ dt Oxy dt
................................................................ 112

21. Chain Rule: two independent variables (3£ 8i4F : WK L ¥ &)
Let w = f(x,y), where f is a differentiable function of x and y. If
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r = g(s,t) and y = h(s,t) such that the first partial gﬁ gf Z‘Z and
Oy ow ow
o all exist, then A and g exist and are given by
Jw Jw 8:1: Oow Oy ow Ow 8:1: Oow Oy
9s oxds oyos M o " oror oy or
................................................................ 117
22. If w is a differentiable function of the n variables x1, x9, ..., ), where
each z; is a differentiable function of the m variables t{, t9, ..., t;, then
for w = f(x1,29,...,xn) you obtain the following.
8_w_ ow @:Cl ow 8x2+” ow Oxy,
ot1 0Ox1 Oty (9:132 Otq aflin oty
ow  Ow 8331 ow 0x9 8w oxy,

0t 0z 06, 9z 0t T oz, ot
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ow Ow dxy Ow Ox9 ow Oxnp,

Bt Ozt Ot | Oxo Ot | Oam Ot
................................................................ 121
23. Chain Rule: implicit differentiation (5 & &% %) If the equa-
tion F'(x,y) = 0 defines y implicitly as a differentiable function of z, then
dy  Fu(z,y)
— = — F 0.

If the equation F'(x,y,2) = 0 defines z implicitly as a differentiable
function of x and y, then
0z Fy(z,y,2)

37; Filj(ajaya Z)
Ve d == = — F 0.
o Fiw,y,2) 0 Oy Fu,y,2) A, 4,2) 7
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Section 13.6 Directional derivatives and gradients ......... 128

24. Directional derivative  Let f be a function of two variables = and y
and let u = cosfi+sin 6 j be a unit vector. Then the directional derivative
(7 @& #) of f in the direction of u, denoted by Dy f, is

fx+tcosB,y+tsinb) — f(z,y)

t—0 t
provided this limit exists.......... ... ... ... ... . ... L. 134
25. Directional derivative If f is a differentiable function of z and

y, then the directional derivative of f in the direction of the unit vector

u=cosfi+sinfjis

Duf@jay) — fx(xay) cos 0 + fy(%y) sin 0.
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26. Gradient of a function of two variables Let 2z = f(x,y) be
a function of x and y such that f; and f; exist. Then the gradient
(# /L) of f, denoted by V f(x,y), is the vector

V(e y) = fele,y)i+ fy(z,y)].
Vifisread as "del f". ... .. .. . . . ... L. 142

27. Alternative form of the directional derivative If f is a differ-
entiable function of x and v, then the directional derivative of f in the

direction of the unit vector u is

Duf@jay) — Vf(CU,y) - U

28. Properties of the gradient Let f be differentiable at the point
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(z,).
1L If Vf(x,y) =0, then Dyf(x,y) =0 for all u.

2. The direction of maximum increase of f is given by V f(x,y). The
maximum value of Dy f(x,y) is |V f(z,y)]|.

3. The direction of minimum increase of f is given by —V f(x,y). The
minimum value of Dy f(x,y) is — ||V f(z,y)|.

29. Gradient is normal to level curves If f is differentiable at
(xo,y0) and V f(xp,yg) # 0, then V f(xg,yo) is normal to the level
curve through (20, 40).. .. oo 156

30. Directional derivative and gradient for three variables Let

f be a function of z, y, and z, with continuous first partial derivatives.
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The directional derivative (7 % £ #) of f in the direction of a unit
vector u = a1+ bj+ ck is given by

Duf(a:,y,z) — @fx(aj,y, Z) + bfy(maya Z) + Cf2<$7y7 Z)

The gradient (# %) of f is defined as

Vf<33, Y, Z) — fib(xa Y, Z) 1 + fy<x7 Y, Z).] + fZ(xv Y, Z) k.
Properties of the gradient are as follows.

1. Dllf(xayaz) — Vf(x,y, Z) U
2.1t Vf(x,y,2) =0, then Dyf(x,y,2) =0 for all u.
3. The direction of maximum increase of f is given by V f(x,y, z). The

maximum value of Dy f(x,y, z) is

IV f(z,y,2)| .
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4. The direction of minimum increase of f is given by —V f(z,y, 2).

The minimum value of Dy f(x,y, 2) is

— IV f(z,y,2)|.
................................................................ 163
Section 13.7 Tangent planes and normal lines.............. 166

31. Tangent plane and normal line Let F' be differentiable at the

point P(xq, 1o, 20) on the surface S given by F'(x,y,2) = 0 such that

1. The plane through P that is normal to V F'(xq, 40, zp) is called the
tangent plane (37¥ ) to S at P.

2. The line through P having the direction of V F(xq, 0, zg) is called
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the normal line (7%%¢) to S at P.

32. Equation of tangent plane If [ is differentiable at (zq, y0, 20),

then an equation of the tangent plane to the surface given by F'(z,y, 2) =

0 at (xq, Yo, 20) is

E (0, yo, 20)(z—20)+Fy (20, yo, 20)(Y—y0)+E=(z0, Yo, 20)(2—20) = 0.

33. Gradient is normal to level surfaces It F'is differentiable at
(0, Y0, z0) and VF(xo,y0, z9) # 0, then VF(xq,yo, 29) is normal to
the level surface through (zg,y0,20). -+ oo 190

Section 13.8 Extrema of functions of two variables .. ... ... 191
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34. Extreme Value Theorem (#&44 € 3%)
tion of two variables z and vy defined on a closed bounded region R in

Let f be a continuous func-

the xy-plane.

1. There is at least one point in R at which f takes on a minimum value.

2. There is at least one point in R at which f takes on a maximum value.

35. Relative extrema Let f be a function defined on a region R

containing (x, yp).

1. The function f has a relative minimum (483 #%-]2) at (xq, yo) if

f(z,y) > f(zg,yo)

for all (z,y) in an open disk containing (x(, y0).
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2. The function f has a relative maximum (#8% 4 X)) at (zq, yp) if

f(z,y) < f(z0,v0)

for all (z,y) in an open disk containing (xzq, y0).

36. Critical point Let f be defined on an open region R containing
(0, yo). The point (zq,yp) is a critical point (Ez5+%5) of f if one of

the following is true.

1. fa(zo,y0) =0 and  fy(xp,yo) =0

2. fz(z0,y0) or fy(xo,yo) does not exist.

37. Relative extrema occur only at critical points If f has a



13.1. SUMMARY 29

relative extremum at (x(,yp) on an open region R, then (xg, ) is a

critical point of f.. ... ... . . L 200

38. Second Partials Test (=% & iz <) Let f have continuous
second partial derivatives on an open region containing a point (a, b) for

which

fz(a,b) =0 and fy(a,b) =0.
To test for relative extrema of f, consider the quantity d = fz4(a, ) fyy(a,b)—
2
fayla,b)]”.
1.If d > 0 and fzz(a,b) > 0, then f has a relative minimum
(48 ¥t 4%]N) at (a, b).

2.1f d > 0 and fyz(a,b) < 0, then f has a relative maximum
(#8¥H4=K) at (a,b).




CHAPTER 13. FUNCTIONS OF SEVERAL VARIABLES 23

3.1f d <0, then (a,b, f(a,b)) is a saddle point (¥255).

4. The test is inconclusive if d = 0.

ables. ... 219
39. Least squares regression line The least squares regression line
(T 7 &R ) for { (1, y1), (fﬂz,yz) (3,93); -, (Tn,yn)} is given
by f(ﬂj) = ax —|_ b Where ng — ’L 133@, Sy — ?:1 y’L! ngx —
— CU?, SSUy — :7 1557,?/7, and
Sey — S5 Sy — S
a = Moy “J and b= -
NSyr — S% n
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Section 13.10 Lagrange multipliers.......................... 237
40. Lagrange’s Theorem (#2421 H & 3 ) Let f and g have continuous

first partial derivatives such that f has an extremum at a point (xg, yg)

on the smooth constraint curve g(x,y) = c. If Vg(zg,yg) # 0, then

there is a real number \ such that

V f(z0,90) = AVg(xg, y0)-

41. Method of Lagrange Multipliers ($i45 8 B e #k) Let f and
g satisfy the hypothesis of Lagrange's Theorem 13.19, and let f have a

minimum or maximum subject to the constraint g(x,y) = ¢. To find the

minimum or maximum of f, use the following steps.

1. Simultaneously solve the equations V f(z,y) = AVg(x,y) and g(z,y) =
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¢ by solving the following system of equations.

fo(m,y) = Mg, y)  fylz,y) = Agy(z,y)  gla,y) =c

2. Evaluate f at each solution point obtained in the first step. The largest
value yields the maximum of f subject to the constraint g(z,y) =
c, and the smallest value yields the minimum of f subject to the

constraint g(z,y) = .

Alternative: Let F'(z,y, \) = f(x,y) — A (g(x,y) — ¢). Then solve the

free-constrained optimization problem for F'....................... 248
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INDEX
alternative form # —® X, S8, 11
of the directional derivative 77 @ & composite function 4~k % &
#, 15 continuity of i 4,
. . ~ é‘t:ﬂk?
Chain Rule i 44 continuity 3£
implicit differentiation [ & # &5, of a composite function & ¥
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of three variables =2 % |9 of a function & #
of two variables "% # of two variables Wy {E & #&
differential %% equality of mixed partial derivatives #
function of three variables =% #& S B BGEEN,
B R 3, 9 equation(s) 7 X
differentiation #% %~ of tangent plane 471, [19
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28R, (16 K,

domain & &3 function(s) &
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of x and y = #= y, gradient of # &, 15
of three variables =% # limit of #&R,
continuity of 4, partial derivative of 1m & %,
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differentiable I &, relative minimum of A8 ¥ &4

domain of & &3k,
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gradient 4, |15 Lagrange's Theorem 324% B4 B & ¥,
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. (16 least squares 3x I~ 7
normal to level surfaces # & #F  regression &

Fo i @, [10 line & 4, 23
of a function of three variables = |aye| curve % 54

LRy R, 16 gradient is normal to 46 & & 7
of a function of two variables # % 16

ook ¥, [15

level curves 3 5 4%

level surface 4z ¢h @,
implicit differentiation [& &% & # %, gradient is normal to #f & & & 74,
13 19

Chain Rule i 454, 13 limit(s) #&R

=

properties of "H , |15
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least squares regression X M7 continuous in i& 45 ,
i 57, 123
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T, 24
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notation for 3%, |6
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o
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5, 23

19

15

relative extrema #8¥H4%&44
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LB 21
Second Partials Test for =% 1@ &
AR, 22
relative minimum #8#H4%& /M MA
of a function F %, 20, 22
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FAx T, 22
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ers, 24
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xr #2 y of x and v, (1

=% 3 of three variables

7 v & # directional derivative of,

16
# B gradient of, |16
# % continuity of,

v 1B & L of two variables,

[ & differentiable,

TACPETS 2 &P differentiabil-

ity implies continuity,

A% total differential of,

E & ¥ domain of,

A A& K44 relative maximum of,

10

20, 22

A EH A& ME relative minimum of,

20|, 22
& 3% range of,

¥4 & ¥ partial derivative of,

# & gradient of, [15
i# 4% continuity of,
&R limit of,

B2 525 critical point of,

21

A8 H & K44 relative maximum of,

20

A # A5 N B relative minimum of,
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% B 6 4h3% range of a function & normal, [18
v {1 & 2 of two variables, 3 N F 7 ¥ & least squares regres-
£ ¥ Theorem sion, [23
%45 Extreme Value, 20 % = contour,
. #&%3% domain Ao # A% ME relative minimum
¥ of a function =P & # A € Second Partials
w18 & 3 of two variables, Test for, 22
M properties R # of a function, 20, 22
# & of the gradient, (15 Ao ¥ A&4E relative extrema
3480 B € 32 Lagrange's Theorem, =P, & 4 E Second Partials
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B & line(s) ical points, 21
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¥4 & # partial derivatives
" Bl & % 3 of a function of two
variables,
ZC%% notation for, 6
F— first,
A mixed
123 3\, equality of,
3% R region R
=T #% & # differentiable function in,
o
Bl open
# % continuous in, [3]

%95 notation

— % 1@ & # for first partial deriva-
tives, 0
. gradient, |15
= % 309 % 3 of a function of three
variables, (16
W & B R # of a function of two
variables, (15
MH properties of, [15
&8 A F 42 e @ normal to level
surfaces, (19
$ A A5 58 normal to level curves,
16
— % 1@ & ¥ first partial deriva-
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tives, &R B of a composite function
o m B mixed partial derivatives  F{E % & of two variables,
123 X, equality of, # % continuous
oAt E EBG1E F X equality of &—% at a point, 3
mixed partial derivatives, A B3R R in the open region R,
i# 45 4# Chain Rule 3
— 1B 3% =i & $ one independent vari- "% B &5 F K function of two vari-
able, [10 ables,
w18 B <2 % 3 two independent vari-ix I~ F 7 least squares
ables, 11 T 5 regression
[ % By~ implicit differentiation, B 4% line, 23
13 i ‘1N 77 8 §f regression, least squares,

# % continuity 23
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F4zwh @ level surface, P 4h € B Extreme Value Theorem,
¥ & B 7 gradient is normal to,
19 4~ differential
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F 5% level curve variables, [9
¥ & B # gradient is normal to, # %~ differentiation
16 S implicit
ZF 54 level curves, ¥ 24 4F chain rule, [13
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IR limit(s) 1% 484 Chain Rule
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