CONTENTS

CONTENTS

10 Conics, Parametric Equations, and Polar Coordinates

10.1 Summary

Index




LIST OF TABLES

1

LIST OF TABLES



LIST OF FIGURES

111

LIST OF FIGURES



LIST OF FIGURES

v




oo 10

CONICS, PARAMETRIC EQUATIONS, AND POLAR COORDINATES

10.1 Summary

Section 10.1 Conicsand calculus . .............................

1. Three ways to define the conics

(a) the intersections of planes and cones

(b) general second-degree equation (—#& =X 7 # A,

Az + Baxy + Cy*> + Dz + Ey + F = 0.



10.1. SUMMARY 2

(c) locus (#¥F) (collection) of points satisfying a certain geometric prop-

erty

2. Standard equation of a parabola The standard form

(24 5X,) of the equation of a parabola with vertex (h, k) and directrix
y=k—pis

(x —h)> =4p(y — k). Vertical axis
For directrix x = h — p, the equation is
(y — k)° = 4p(z — h). Horizontal axis

The focus lies on the axis p units (directed distance) from the vertex.
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The coordinates of the focus are as follows.

(h,k+p)  Vertical axis (h+p, k) Horizontal axis

3. Reflective property of a parabola  Let P be a point on a parabola.
The tangent line to the parabola at the point P makes equal angles with
the following two lines.

(a) The line passing though P and the focus.
(b) The line passing through P parallel to the axis of the parabola.

4. Standard equation of an ellipse The standard form of the

equation of an ellipse with center (h, k) and major and minor axes of
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lengths 2a and 2b, where a > D, is

_ )2 — k)2
(z ) 4+ (Y " ) =1 Major axis is horizontal

CL2
or
(. — h)* N (y — k)
b? a?
The foci lie on the major axis, ¢ units from the center, with ¢ = aq?— b2,
21

= 1. Major axis is vertical

5. Reflecting property of an ellipse Let P be a point on an ellipse.
The tangent line to the ellipse at point P makes equal angles with the
lines through P and thefoci........... ... ... ... ... .............. 26

6. Eccentricity of an ellipse The eccentricity (&%) e of an
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ellipse is given by the ratio

7. Standard equation of a hyperbola The standard form of the
equation of a hyperbola with center at (h, k) is

_h)2 — k)2
(@ 5 ) — v - ) =1 Transverse axis is horizontal
a

or
2 2
(y—k)* (-1
a? b2
The vertices are a units from the center, and the foci are ¢ units from

= 1. Transverse axis is vertical

the center, where T 38

8. Asymptotes of a hyperbola For a horizontal transverse axis
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(7K -F & #4), the equation of the asymptotes are

b b
y=k+—-(x—h) and y=k——(x—h).
a a

For a vertical transverse axis (& & #4), the equation of the asymp-
q ymp

totes are

9. Eccentricity of a hyperbola The eccentricity (A5 %) e of a

hyperbola is given by the ratio
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10.

11.

Section 10.2 Plane curves and parametric equations........ 50

Plane curve If f and g are continuous functions of £ on an interval

I, then the equations

z=f(t) and y=g(t)

are called parametric equations (# 7 #5\) and t is called the

parameter (5#). The set of points (z, i) obtained as ¢ varies over the

interval [ is called the graph (&) of the parametric equations. Taken to-

gether, the parametric equations and the graph are called a plane curve

(‘Fa@mehér), denoted by C. ... 54

Smooth curve (F#F sh4t) A curve C represented by = = f(t)
and y = g(t) on an interval I is called smooth (FF7%) if f’ and ¢’

are continuous on I and not simultaneously 0, except possibly at the
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endpoints of I. The curve C' is called piecewise smooth (/¥ -F7#)

if it is smooth on each subinterval of some partitionof I............ 71
Section 10.3 Parametric equations and calculus............. 77
12. Parametric form of the derivative If a smooth curve C'is given

by the equations x = f(t) and y = g(t), then the slope of C' at (z,y) is

dy dy/dt dz

de — da/dt a7

13. If dy/dt = 0 and dx/dt # 0 when t = ¢, the curve represented by x =
f(t) and y = g(t) has a horizontal tangent at (f(¢g), g(tp)). Similarly,
if de/dt = 0 and dy/dt # 0 when t = ¢, the curve represented by
r = f(t) and y = g(t) has a vertical tangent at (f(%g), g(tg))....... 88
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14.

15.

Arc length in parametric form If a smooth curve C' is given
by x = f(t) and y = ¢(t) such that C' does not intersect itself on the
interval a < t < b (except possibly at the endpoints), then the arc length

of C' over the interval is given by

s — / \/ dt)zdt -/ N

Area of a surface of revolution If a smooth curve C given by
r = f(t) and y = g(t) does not cross itself on an interval a < t < b,
then the area S of the surface of revolution formed by revolving C' about

the coordinate axes is given by the following.
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2 2
1.5 =2m fa{?g(t)\/<a> + (d_t> dt Revolution about the z-axit

dz\*  (dy\~
2.5 =2m fff(t)\/<—x> + (_y) dt Revolution about the y-axi:

dt dt
................................................................. 98
Section 10.4 Polar coordinates and polar graphs........... 102
16. Polar-to-rectangular conversion The polar coordinates (r, 6)

of a point are related to the rectangular coordinates (x,y) of the point

as follows.

1. z =rcosf and y =rsinf. 2. tan = 2 and r? = 22 4+ y%.. 109
x

17. Slope in polar form If f is a differentiable function of 6, then the
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slope of the tangent line to the graph of » = f(f) at the point (r,0) is

dy dy/d0  f(0)cosO+ f'(0)sind
de — dz/d0 —f(0)sinb + f(0)cos0

provided that dx/df # 0 at (r,0)...... ... ... ... L. 120

18. Tangent lines at the pole If f(a) =0 and f'(a) # 0, then the

line & = « is tangent at the pole to the graph of r = f(6)......... 125
Section 10.5 Area and arc length in polar coordinates. .. .. 131
19. Area in polar coordinates If f is continuous and nonnegative on

the interval [a, (], 0 < B —a < 2, then the area of the region bounded
by the graph of r = f(0) between the radial lines # = o and 6 = 3 is
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given by

20. Arc length of a polar curve Let f be a function whose derivative

is continuous on an interval @ < 6 < 3. The length of the graph of
r= f(f) fromf=atof=/is

21. Area of a surface of revolution Let f be a function whose

derivative is continuous on an interval o < 6 < (3. The area of the
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surface formed by revolving the graph of r = f(0) from 0 = a to 0 = 3

about the indicated line as follows.

(a) S =2 [Pyds =27 [V £(0)sin6\/[f(OF + /()28  About the
(b) S =2r [Pzds =27 [ £(6) cos0\/[FO)2+ [f'(6)2d0  About the
................................................................ 153

Section 10.6 Polar equation of conics and Kepler's law....156

22. Classification of conics by eccentricity (H#&-SE HE 5 )
Let F' be a fixed point (focus) and let D be a fixed line (directrix) in
the plane. Let P be another point in the plane and let e (eccentricity
(&> %)) be the ratio of the distance between P and F’ to the distance

between P and D. The collection of all points PP with a given eccentricity

IS a conic.
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(a) The conic is an ellipse if 0 < e < 1.
(b) The conic is a parabola if e = 1.
(c) The conic is a hyperbola if e > 1.

................................................................ 157
23. Polar equations of conics The graph of a polar equation of the
form
ed ed
r = or r = _
1 +ecosb 1l +esinf

is a conic, where e > ( is the eccentricity and |d| is the distance between

the focus at the pole and its corresponding directrix. .............. 162

24. The four types of equations indicated in Theorem 10.17 can be classified

as follows, where d > 0.
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d
a. Horizontal directrix above the pole: r = c :
1+ esiné
d
b. Horizontal directrix below the pole: r = ‘ :
1 —esinf
. . . . ed
c. Vertical directrix to the right of the pole: r =
1+ ecosf
d
d. Vertical directrix to the left of the pole: r = ‘
1 —ecosf
................................................................ 165
25. Ellipse: v = a?(1 — €?)  Hyperbola: b> =a?(e> —1)............ 169

26. Kepler's Laws (%, | $1 & 4£)

(a) Each planet moves in an elliptical orbit with the sun as a focus.

(b) A ray from the sun to the planet sweeps out equal areas of the ellipse

in equal times.
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(c) The square of the period is proportional to the cube of the mean

distance between the planet and the sun.
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