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Chapter 9

INFINITE SERIES

9.1 Summary

Section 9.1 Sequences............ ... ... 1

1. The limit of a sequence Let L be a real number. The limit
(#IR ) of a sequence {ay,} is L, written as

lim a, =L
n—oo

if for each € > 0, there exists M > 0 such that |a,, — L| < € whenever
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n > M. If the limit L of a sequence exists, then the sequence converges

(#c#k) to L. If the limit of a sequence does not exist, then the sequence
diverges (£#)

2. Limit of a sequence Let L be a real number. Let f be a function

of a real variable such that

lim f(x)= L.
T— 00
If {an,} is a sequence such that f(n) = a,, for every positive integer n,
then

lim an = L.
n—oo

3. Properties of limits of sequences Let limy,—no @, = L and
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1. limp—oo (ap £by) = L+ K 2. limy,— can = cL, ¢ is any real numbe

L
n
9

4. Commonly used ordering If a > 0and b > 1, then

Inn < n% < b < n!

, a
where a,, < b, denotes that limy,—o0 — = 0.0\ oo 12

bn

5. Squeeze Theorem for sequences (¥ 7| & #% & 37 )] If

n—oo n—oo

and there exists an integer N such that a,, < ¢, < by, for all n > N,
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then

lim ¢, = L.
n—oo

6. Absolute Value Theorem (Z3&5€ )  For the sequence {ay},

lim |ap| =0 then lim a, = 0.
n—00 n—0o0

7. Monotone sequence (£ 3##%]) A sequence {ay,} is monotonic

(¥-34) if its terms are nondecreasing

ap<ar<a3<---<ap<---
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or if its terms are nonincreasing

a1 >ag>a3> > an >

8. Bounded sequence (A - # 7])

(a) A sequence {ay } is bounded above if there is a real number M such
that a,, < M for all n. The number M is called an upper bound
(LEJ%) of the sequence.

(b) A sequence a,, is bounded below if there is a real number N such

that N < a,, for all n. The number N is called a lower bound
(TF %) of the sequence.

(c) A sequence {a,} is bounded (% 5F) if it is bounded above and

bounded below.
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9. Bounded monotonic sequences (¥ 3# A 5-# %) If a sequence

{ay} is bounded and monotonic; then it converges. ................ 26
Section 9.2 Series and convergence .......................... 30
10. Convergent and divergent series For the infinite

series > °° 1 a, the nth partial sum (% n A5 4=) is given by

S = a1 +ao+---+ an.

If the sequence of partial sums {5} converges to S, then the series

> o2 1 an converges (Bcgk). The limit S is called the sum of the series
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(s EA).
o
S=a1+ay+---+apn+--- S:Zan
n=1
If {Sy,} diverges, then the series diverges (£#). ................. 33

11. Telescoping series (3% #)  Ifap = byy1—bp, thend ! a; =

1 (bji1 — bj) = byy1—by. Moreover, if the series converges, its sum

|S S — hmn_>oo bn_|_]_ — b]_ ......................................... 37

12. Convergence of a geometric series A geometric series
(4 T4 #) with ratio r diverges if [r| > 1. If 0 < |r| < 1, then the

series converges to the sum

Zarnzl , 0<r] < 1.
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13. Propertiest of infinite series Let > ay and > by, be convergent
series, and let A, B, and ¢ be real numbers. If Z%O:l an, = A and

-~ 1 by, = B, then the following series converge to the indicated sums.
(a) >0 cap = cA
(b) > 2 (an+by)=A+ B
(c) >opeilan —by) =A - DB

n=1
................................................................. 43
14. Limit of the nth term of a convergent series If > 0% 1 an
Is convergent, then limy,—~canp =0. .. ... L. 43
15. nth-term test for divergent If limy,— o0 an, # 0, then 273021 an

AIVEIgES. .\ 45



CHAPTER 9. INFINITE SERIES 9

Section 9.3 The Integral Test and p-series................... 49

16. The Integral Test (fa5# %) If f is positive, continuous, and

decreasing for x > 1 and a,, = f(n), then

> o and / flo

either both converge or both diverge. .............................. 50

17. p-series: A series of the form

Z—=—+ +31 + -

is a p-series (p %&%t) where p is a positive constant. For p = 1, the
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series -
}:l—1+1+1+
n 2 3

n=1

is the harmonic series (FF#% ). A general harmonic series (—AxF#A#=

of the form > ; 1+ ) 58
an

18. Euler-Mascheroni constant v (C) (4% #& v (C))
http://en.wikipedia.org/wiki/Euler/E2%80%93Mascheroni const:

n

1
v = lim Zz—lnn ~ 0.5772156649

n— 00
k=1

Is a mathematical constant recurring in analysis and number theory. . 58

19. Riemann zeta function ((s) (% ( &%)



http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
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http://en.wikipedia.org/wiki/Riemann zeta function

0.0

)=

n=I1
is a function of a complex variable s that analytically continues the sum of
the infinite series which converges when the real part of s is greater than
1. The Riemann zeta function plays a pivotal role in analytic number

theory and has applications in physics, probability theory, and applied

SEAtISTICS. . . .o 59
20. Convergence of p series The p-series (p %&#)
Z— = — + + LI
B 3P AP

1. converges if p > 1, and 2. divergesif 0 <p<1. ............ 60


http://en.wikipedia.org/wiki/Riemann_zeta_function
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SUMMARY 12

21.

22.

23.

Section 9.4 Comparisons of series ............................ 63
Direct Comparison Test (A Z IR T) Let 0 < ay, < by, for
all n.

1. If > 7% | by, converges, then > °° | a;, converges.

2. If > °° | ay, diverges, then Y >7 , b, diverges. .................. 65
Limit Comparison Test (&% Z1LiER) Suppose a, > 0,
by, > 0,

lim (%) = L
n—o0 \ by

where L is finite and positive. Then the two series ) " a, and ) _ b, either
both converge both diverge....... ... ... ... .. ... ... .. ... ..., 71

Section 9.5 Alternating series..................... ... ......... 76
Alternating Series Test (X#&EET) Let ap, > 0. The

A
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alternating series

O

Z( 1)"a, and Z )" g

n=I1
converge if the following two conditions are met.

1. limp—0can=0 2.ap11<ap, foralln ................... 78

24. Alternating Series Remainder (X &% #k78) If a convergent

alternating series satisfies the condition a,,1; < a;, then the absolute
value of the remainder R involved in approximating the sum S by Sy

is less than (or equal to) the first neglected term. That is,

S — S| = |Bn| < anir.
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25. Absolute convergence (£l #X) If the series ) |ay| con-

verges, then the series ) " ay, also converges. ....................... 88

26. Absolute and conditional convergence

(a) > ay, is absolutely convergent (£ %Hlst) if D |an| converges.

(b) > ay, is conditionally convergent (#£#Fsk) if > ay, converges
but ) |ay| diverges.

27.If > " ay, is conditionally convergent and .S is any real number, the terms

of the series can be rearranged to convergeto S.................... 95
Section 9.6 Theratioand root test .......................... 95

28. Ratio Test (%1 x) Let ) ay, be a series with nonzero terms.
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- a
(a) > ay, converges absolutely if limj,_, ntll o,
an

: - a : a

(b) > ay, diverges if limy,— oo L S 1 or limy—eo |- | = 0.
an an

. .. .o Un+1

(c) The Ratio Test is inconclusive if limy, o |——| = 1.
an

29. Root Test (RXA&RT) Let > ay, be a series.

(a) > ay, converges absolutely if limy, o0 /|an| < 1.
(b) > ay, diverges if limy, 0o V/|an| > 1 or limy— 0o V/|an| = oc.
(c) The Root Test is inconclusive if limy—.o0 V/|an| = 1.
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30. Guidelines for testing a series for convergence or divergence

[-] Does the nth term approach 07 If not, the series diverges.

[-]Is the series one of the special types-geometric, p-series, telescoping,

or alternating?
[-] Can the Integral Test, the Root Test, or the Ratio Test be applied?

[-] Can the series be compared favorably to one of the special types?

Section 9.7 Taylor polynomials and approximations........ 110

31. Taylor polynomial and Maclaurin polynomial It f has n deriv-
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atives at ¢, then the polynomial

Pu(e) = F@ + F@ -+ LD @ T oo

is called the nth Taylor polynomial for f at c(f & c 8 n FE& ¥ %A
If ¢ =0, then

()

n!

10) o, f0) 5 fP0)

Po(x) = £(0) + £(0)z + AR =

is also called the nth Maclaurin polynomial for f at c(f £ c 8 n &5
119

32. Taylor’s Theorem (% #)5€ 3% ) If a function f is differentiable

through order n + 1 in an interval I containing c, then, for each = in I,
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there exists z between x and ¢ such that

/" (n)
F@) = O+ 7@+ e I (o Ry
where (4 1)
S (Z) n+1
Rn(x) (n 4 1)| (33 - C)
................................................................ 131
Section 9.8 Power series .............. .. ... .. . . .. . .. 138
33. Power series If « is a variable, then an infinite series of the form
O
Zanxn:a0+a1x+a2x2+a3x3+---+anxn+°--
n=0

is called a power series (# % #). More generally, an infinite series of
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the form
o

Z an(z—c)" = ap+ai(z—c)+as(z—c)’+ag(z—c)

n=0

3

is called a power series centered at c (VA ¢ B ¥ &) F &), where

C 1S @ CONSEANt. . ..., 140

34. Convergence of a power series For a power series centered
at c, precisely one of the following is true.
1. The series converges only at c.

2. There exists a real number R > 0 such that the series converges

absolutely for |x — ¢| < R, and diverges for |x — ¢| > R.

3. The series converges absolutely for all x.

The number R is the radius of convergence (B #F12) of the power

+- - tap(z—c)"+- - -
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35.

series. If the series converges only at ¢, the radius of convergence is
R =0, and if the series converges for all x, the radius of convergence is
R = 00. The set of all values of x for which the power series converges

is the interval of convergence (s ) of the power series. .. 144

Properties of functions defined by power series If the

function given by

O

f(flf):Zan(fli—c)n:aoJral(:L‘—c)+a2(x—c)2+a3(q;_c>3+...

n=0
has a radius of convergence of R > 0, then, on the interval (c— R, c+R),
f is differentiable (and therefore continuous). Moreover, the derivative

and antiderivative of f are as follows.

L f'(z) =>°%  nap(x —c)" ! = a1 +2as(x — ) +3a3(x —c)> 4 -
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36.

(:L’ . C)n—l—l

n+ 1

)2
= C'+ag(z—c)+aq = o) +-

2. [ flz)de=C4+> 7 an >

(x — )3
a9 3 +

The radius of convergence of the series obtained by differentiating or

integrating a power series is the same as that of the original power se-
ries. The interval of convergence, however, may differ as a result of the
behavior at the endpoints. ........ ... ... ... L. 158

The interval of convergence of the series obtained by differentiating a
power series may get worse but cannot get improved. However, the
interval of convergence of the series obtained by integrating a power

series may get improve but cannot get worse. ..................... 158

Section 9.9 Representation of functions by power series. .. 162
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37. Operations with power series Let f(x) = D> apx” and g(x) =

> bpx™.
1. fkx) =30 qank™” 2. f(2) =32 qana™ 3. f(z) £

glx) =" olan £bp)x™ o 168

Section 9.10 Taylor and Maclaurin series ................... 174

38. The form of a convergent power series (s F & G A X)

If f is represented by a power series f(z) = > an(xz — ¢)” for all z in

an open interval I containing ¢, then a,, = f™(c)/n! and

F(c) F(e)

A n!

f(@) = fle)+f(O)z—c)+5 5 (x—c)*+ -+ (5—c) 4

39. Taylor and Maclaurin series If a function f has derivatives of all
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orders at x = ¢, then the series

. fn)(,
S o = g+ fl)a—c) oot
n=0 '

is called the Taylor series (& #y% #) for f(x) at c¢. Moreover, if ¢ = 0,
then the series is the Maclaurin series (5 5.5 # 4 %) for f.....178

40. Convergence of Taylor series If lim,,_o0 By, = 0 for all  in the

interval I, then the Taylor series for f converges and equals f(x),

© f(n)(e
fay =3 LD g
n=0 '

T

41. Guidelines for finding a Taylor series
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(a) Differentiate f(x) several times and evaluate each derivative at c.

e flo, o, e o f"),
Try to recognize a pattern in these numbers.

(b) Use the sequence developed in the first step to form the Taylor coefficients
(E#18%) an, = f7(c)/n!, and determine the interval of conver-
gence for the resulting power series

f"(c)
2!

F)(e)

2
(x—c)"+ -+ -

f(C)+f/(C)($—C)—|— (:E—c)n—l—---

(c) Within this interval of convergence, determine whether or not the

series converges to f(x).
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42. Power series for elementary functions

Function
r - 2 3 4 .
:1:_1 (z—1)+@x-1) "—(z—=1)0+@—-1)" =+ (=1)"z
1
—l—z+? -t = (=)
1+ ( |
(=172 (z—-1)7° (z—1)* (-1 Uz
e — (r—1) — _
e (:L“ ) 2 * 3 4 i * n
$_1 xQ x3 x4 x5_|_..._|_aj_n_|_...
S I TIRA T 7l
| 1,3 . le5 5177 N x9 N (_1)nx2n+1 .
SINT = T — _ - ... .
CTRETI TR 2n 1 1)
. 1,2 334 5176 $8 (_1)??,1.271
R T TR T T
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; 5133 n a:5 :(;7 N x9 N (_1>nx2n—|—1 N
arctanxr = r — — - ...
3 5 ! 9 2n + 1
. N 3 +1-3:1:5+1-3-5:}[:7+ N (2n)lz?" N
Arcsinxy = I _— ..
2:3 2:4-5 2-4.-6-7 (2mn!)2(2n + 1)
k(k— D2 k(k—D(k =22 Ekk—1(k—2)(k
(14+2)" =1+ ke + ( )z n ( ) ) n ( )( )(
2! 3! Al
................................................................ 194

43. Euler's Formula: €% = coST + iSINT oo v ononon 194
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INDEX

f e ctynPEa$h %A nth Taylor %, 14
polynomial for f at ¢, [16 Alternating Series Remainder 3 4 %%&
f & ctnEHLGHKEAN nth #erA, (13
Maclaurin polynomial for f at ¢, Alternating Series Test X 4% % %4k
16 Z, 12

absolute convergence &3 &k, 14 arcsine function & JE 5% & #

Absolute Value Theorem % ¥4 &  series for SE, 25
) arctangent function R iE7:% 8

absolutely convergent series & #Hix  series for & 2, 25




INDEX 28

Bounded monotonic sequences ¥ 38 conditionally convergent series 45 #F

A R-#5, [0 WA 48 B, [14
bounded A 5% converge ¥ X, 1, 0
above L, convergence J X
below T, absolute &%, |14
sequence ¥ 71, conditional 44, 14
center ¥ s interval of B R, (19, [20
of a power series F%& ¥, |18 of p-series p &, [11
comparison test bbi& & £k of a geometric series %4748 &,
direct Z g [12 of a power series F % ¥, |19
limit #&I%, [12 of a sequence # %,

conditional convergence 4 #F M £, of a series & ¥, [0
14 of Taylor series Z=¥h % ¥, 23




INDEX 29

radius of F4&, |19, 20 Root Test &R A€, [15

tests for series £ E € convergent power series, form of Ik
Alternating Series Test X 4% % ¥ SRS S, 22
B, [12 convergent series, limit of nth term
Direct Comparison Test & Az of &S ¥ > n A I&IR,
z 12 cosine function #85% &

geometric series %174 ¥, series for 82 3, 25

guidelines ¢ 51, [16 differentiation #%& %"

Integral Test A7 4, 9 of power series F4& ¥, 20

Limit Comparison Test #%&[% Z }t Direct Comparison Test # 3 Z pdk
B, (12 Z, 12

p-series p & ¥, 11 diverge 2, |1}, 6

Ratio Test i, |14 divergence ##&




INDEX 30

of a sequence #& 7, Root Test &R AAxE, [15
of a series & ¥, 0 domain & &%
tests for series %% # of a power series #£& ¥, 19

nth-Term Test 5% n AR, elementary function(s) FA A & #
Direct Comparison Test Z A&  power series for # 4 &, 25

%, 112 error 3% £
geometric series AT 3, iIn approximating a Taylor polyno-
guidelines & 3], |16 mial ¥ %A\, 17
Integral Test #&9-#, 0 Euler-Mascheroni constant v (C') A
Limit Comparison Test #&IR Z 4 (), 10

¥ [12 exponential function ¥ & ¥
p-series p & ¥, 11 series for % %, 25

Ratio Test i x, |14 form of a convergent power series #&
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HFBEHH X, 22 or divergence # & % ¥ 89 I £X
function(s) S¥ XA, (16
defined by power series, properties |5rmonic series HAf 45 %, [10
of T /kFsm¥ » WH, 20 general —#%,
general harmonic series —#&x 474 infinite series (or series) # %5 & &
#, 10 nth partial sum % n A35-F=
geometric series %174 ¥, p-series p % ¥, 9
convergence of J#X, absolutely convergent & ¥k ¢k, 14
divergence of £, alternating X 4%
guidelines & 3] remainder 878, [13

for finding a Taylor series 3t F 4  conditionally convergent I #%,
s, 23 '

for testing a series for convergence  convergence of # &k, [0
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convergent, limit of nth term ¥ Integral Test A5 <, 9
& > n TR &R, integration A4

divergence of £, 6 of power series F4& ¥, 20
nth term test for % n B4, [ interval of convergence J & & R, 20

guidelines for testing for CONVErgence| ; i+ Comparison Test #& MR % H ik
or divergence of & & I £k 2 % = D

#8951, 116 limit(s) A&
harmonic 4=, 9 of nth term of a convergent series ¥
p-series p #& ¥, 11 S mEH n A,
properties of &, of a sequence ¥ 71, [1]
sum of #=, 6 properties of HH
telescoping ¥4, lower bound of a sequence & 7| T 3%,

terms of 8, [
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Maclaurin series % 5,5 4k & 3, 23 ctn P %aN, |16
monotonic sequence FFHE 7, nth term % n A
bounded £ 5%, 6 of a convergent series J& £ % ¥,
nth-Term Test for Divergence %3 %
n AT,

natural exponential function B & 45

Fek #
series for & 3, 25 operations 3£ J
natural logarithmic function B #&#  With power series T, 22
ok & p 4 ¥ p-series, 9
series for & ¥, 25 I convergence of, [11

nth Maclaurin polynomial for f atc f  %#& divergence of, |11
LcWgnlEH 3K %A, 16) FAF harmonic, 9 [11

nth partial sum 3 n B34 %=, 6 p-series p & ¥, 9

nth Taylor polynomial for f at ¢ f #£ convergence of # £k, |11
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divergence of ##&, (11 integration of #a4~, 20
harmonic %=, 9] [11 interval of convergence J& s B M,
partial sums, sequence of #f 4= > 19
#7], 0 operations with £ H, 22
power series # % ¥, (18 properties of functions defined by &%
centered at ¢ P /& ¢, [18 EMH, 20
convergence of ¥ &k, [19 interval of convergence of K& &
convergent, form of & » & X, M1, 20
22 radius of convergence of ¥ & F
differentiation of #%%~, 20 i, 120
domain of & &3k, [19 radius of convergence # £ F4&, (19

for elementary functions J A& &3, properties *'H
25 of functions defined by power se-
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35

ries JIl B 88 HE &£ 69 R ¥, 20
of infinite series #& %5 4% ¥,
of Limits of sequences # 7| &9 &R

radius F4&

of convergence ¥ #&, [19
Ratio Test tu#lts €, (14
remainder #k*8

alternating series X #8443, 13

of a Taylor polynomial 4= %) % &
A, 117
Riemann zeta function ((s) £ % (

% ¥, 10

Root Test & X A&, [15

sequence ¥ 7|

Absolute Value Theorem £ #14 €
,
bounded above & L&,
bounded below A T J,
bounded monotonic A &3, 6
bounded & J,
convergence of B#K,
divergence of £,
limit of A%, (1]
properties of P& |
lower bound of T,
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monotonic ¥ 34,
of partial sums ¥4-#=, 6
Squeeze Theorem # 3% € 3,
upper bound of 5%,

series 4% ¥

nth partial sum % n {B3R5F=
nth term of convergent I £ 65 5%

n &,
p-series p & ¥, 9
absolutely convergent & # & #4

14

Alternating Series Test X 4% %& ¥

A, 12

conditionally convergent 4 #F ik £,

convergence of £, 0
convergent, limit of nth term J&
# 0 % on FANER,
Direct Comparison Test Z g€,
12
divergence of £, 6
nth term test for % n AR,
general harmonic —#& ##=, 9
geometric AT
convergence of &L,
divergence of ##&,

guidelines for testing for convergence
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or divergence & T M L XA E  sum of F=, [f]

5], 116 Taylor =%, 22
harmonic 34, 9 telescoping ¥4,
infinite & %5 terms of 7&, [0

properties of M, sine function iE 7% & $&
Integral Test A4, [ series for & 3k, 25
Limit Comparison Test #%&[IR & Squeeze Theorem #4522

¥ 12 for sequences # 7,
Maclaurin % %974k, 22 sum(s) #¢
o-series p & ¥, [I1 nth partial % n A3 %, 6

of a series & ¥, 6
sequence of partial ¥/ % 7, |6

power #, (18
Ratio Test L€, [14
Root Test R AT, [15 Taylor coefficients Z= #1423, 24
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Taylor series #=¥h 4% ¥,
convergence of &L,

guidelines for finding 3+ H & 3],
Taylor's Theorem # ¥ #2,

23

23

23

17

telescoping series #iH & ¥,

terms *B

of a series &%, 6
test(s) &

for convergence £k

Alternating Series X 4%,
Direct Comparison Ztt,

geometric series 21T 4% ¥,

guidelines & 3], 16
Integral A%, 9

Limit Comparison #&[R & b,

p-series p & ¥, [11
Ratio 4], [14
Root & 5\, [15

Test ¥ &k

for convergence £k

Integral #4244~ 9

12

12

12
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Theorem & ¥
Absolute Value 2 #H4.,
Squeeze FHE

for sequences ¥ 7,
Taylor's =%, [17

upper bound _E3t
of a sequence ¥ 7,

F .8 center

F % ¥ of a power series,

18

B IE b1k 3 arctangent function

4% ¥ series for, [25
F_E 5% 2% 8 arcsine function
4% ¥ series for, 25

K3 % # v (C') Euler-Mascheroni
constant v (C'), [10
el M & Ratio Test, 14
Y & 47k comparison test
B 4 direct, 12
AR limit, (12
— A% A F» 4% 3 general harmonic se-
ries, (10

E 3 upper bound
# 7| of a sequence,
aE 3% & 8L sine function
4% ¥ series for, 25
R A% H#r78 Alternating Series Re-
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mainder, (13

AL % B T Alternating Series Test,

12
F 42 radius

B £ of convergence, [19
B & converge, [1], )
£ convergence

p % ¥ of p-series, [11

F 42 radius of, 19, 20

3% 3 of Taylor series, 23

4% ¥ of a series, 0

% BT tests for series

P & 3 p-series, 11

T e Direct Comparison Test,
12
kbfﬁ]#w,a Ratio Test, 14

&% 45 B & Alternating Series
Test, 12

& A E Root Test, (15
%1 % 3 geometric series,
R & e & Limit Comparison
Test, 12
& 3] guidelines, (16
AT Integral Test, |9
B M interval of, [19, [20
1%54F conditional, [14




INDEX 41

AT 4% 3 of a geometric series, E above,

ZH absolute, |14 # 7| sequence,
# 7| of a sequence, B A& 4% # & & natural exponential
F 8% of a power series, [19 function

M BE > n AHYER convergent &I series for, 25
series, limit of nth term of, B 2R ¥ # & # natural logarithmic

W sk B M interval of convergence, 200  function

A FEE > B convergent power % 3K series for, 25

series, form of, 22 % function(s)

W T B F A A K form of a conver- & ZF&E > M'H defined by power
gent power series, [22 series, properties of, 20

A 3~ bounded Z ¥ Theorem

T below, P I Squeeze
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# 7| for sequences, % n R34 nth partial, 6

=¥ Taylor's, 17 /1% # 7| sequence of partial, |6

Z#H4 Absolute Value, B 4 I A & Direct Comparison Test,
T & 3% domain 12

F % of a power series, [19 5 8% B exponential function
MH properties 4 ¥ series for, [25

A3 g BT £ 09/ of functions # 3% ¥ Squeeze Theorem

defined by power series, 20 # 7| for sequences,

M 52 4% B of infinite series, 8 1 XM E Root Test, [15
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