- 1. (24%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.
 - (a) $\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n^2}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(\sqrt{n})}{n^{\frac{3}{2}}}$ (c) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n^2}{n^3+3}$

(d) $\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^2}$

Ans:

(a) Since $(ne^{-n^2})' = (1 - 2n^2)e^{-n^2} < 0$ which is decreasing and $\lim_{n \to \infty} ne^{-n^2} = 0$

(exponential is much faster). Therefore, by the alternating series test $\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n^2}$ converges.

$$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n^2} = \sum_{n=1}^{\infty} |n e^{-n^2}| = \sum_{n=1}^{\infty} n e^{-n^2}$$

Let $f(x) = xe^{-x^2}$, $f'(x) = (1 - 2x^2)e^{-x^2} < 0$ for $x \ge 1$. f is positive, continuous and decreasing for $x \ge 1$

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} x e^{-x^{2}} dx = \lim_{b \to \infty} \frac{1}{2} \int_{-b^{2}}^{-1} e^{u} du$$

(Let
$$u = -x^2$$
, $du = -2xdx$) $= \frac{1}{2}e^{-1}$ which is converge

Therefore, $\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n^2}$ is absolute converges

(b) $\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{\sin(\sqrt{n})}{n^{\frac{3}{2}}} \right| = \sum_{n=1}^{\infty} \frac{\sin(\sqrt{n})}{n^{\frac{3}{2}}}$ Since $\frac{\sin(\sqrt{n})}{n^{\frac{3}{2}}} < \frac{1}{n^{\frac{3}{2}}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ is a p-series with p > 1 which is converge. By comparison test, $\sum_{n=1}^{\infty} \frac{\sin(\sqrt{n})}{n^{\frac{3}{2}}}$ is converge. Therefore, $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(\sqrt{n})}{n^{\frac{3}{2}}}$ is absolute converge. (c) $(\frac{2n^2}{n^{3}+3})' = \frac{-2n^4+12n}{(n^3+3)^2} < 0$ for $n \ge 2$, and $\lim_{n \to \infty} \frac{2n^2}{n^3+3} = 0$. Therefore, by the alternating series test $\sum_{n=2}^{\infty} (-1)^{n+1} \frac{2n^2}{n^3+3}$ converges. So is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n^2}{n^3+3}$ (Since finite term does not affect the convergence or divergence)

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{2n^2}{n^3 + 3} \right| = \sum_{n=1}^{\infty} \frac{2n^2}{n^3 + 3}$$

Since $\lim_{n \to \infty} \frac{\frac{2n^2}{n^3+3}}{\frac{1}{n}} = 2$ and since $\sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series with $p \le 1$ which is

diverge. By the limit comparison test, $\sum_{n=1}^{\infty} \frac{2n^2}{n^3+3}$ is diverge.

Therefore, $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n^2}{n^3+3}$ is conditionally converge.

(d)
$$\sum_{n=1}^{\infty} \sqrt[n]{\left(\frac{n+1}{n}\right)^{n^2}} = \sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^n = e > 1$$
 which is diverge.

2. (16%) Find the interval of convergence of the power series (Be sure to check the for the convergence at the endpoints of the intervals)

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \frac{(x)^n}{(2x+1)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!(x+1)^n}{3^n}$$

Ans:

(a) $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)}{(n+2)} \left(\frac{x}{2x+1}\right)^{n+1}}{\frac{n}{(n+1)} \left(\frac{x}{2x+1}\right)^n} \right| = \left| \frac{x}{2x+1} \right|$ By the ratio test, the series converges for $\left| \frac{x}{2x+1} \right| < 1$ When $\frac{x}{2x+1} < 1 \rightarrow x > \frac{-1}{2}$ or x < -1When $\frac{x}{2x+1} > -1 \rightarrow x > \frac{-1}{3}$ or $x < \frac{-2}{3}$ The intersection is $x > \frac{-1}{3}$ and x < -1

When $x = \frac{-1}{3}$: $\sum_{n=1}^{\infty} \frac{n}{n+1} (-1)^n$ is diverge by the n-th term test for divergence since $\lim_{n \to \infty} \frac{n}{n+1} (-1)^n \neq 0$

When x = -1: $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is diverge by the n-th term test for divergence since $\lim_{n \to \infty} \frac{n}{n+1} \neq 0$

So the interval of convergence is $x > \frac{-1}{3}$ and x < -1

(b)
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)!(x+1)^{n+1}}{3^{n+1}}}{\frac{n!(x+1)^n}{3^n}} \right| = |x+1| \lim_{n \to \infty} \frac{n+1}{3} = \infty$$
. which implies that the series converges only at the center -1.

3. (10%) Let $f(x) = \sqrt{1+x} + \sqrt{1-x}$, what is $f^{(10)}(0) =$? Ans:

$$f(x) = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(-\frac{1}{2})}{2!}x^2 + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{3!}x^3 + \dots + 1 - \frac{1}{2}x + \frac{\frac{1}{2}(-\frac{1}{2})}{2!}x^2$$
$$- \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{3!}x^3 + \dots = f(0) + f'(0)x + \frac{1}{2!}f''(x)x^2 + \dots$$
$$f^{(10)}(0) = 2\left(\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\dots\left(-\frac{17}{2}\right)\right)$$

4. (18%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function)

.

(a)
$$\sum_{n=0}^{\infty} \frac{3^{n+1}}{n!}$$

(b) $\frac{1}{1\times 2} - \frac{1}{2\times 2^2} + \frac{1}{3\times 2^3} - \frac{1}{4\times 2^4} + \dots$
(c) $\lim_{x \to 0^+} \frac{\arctan(2x) - \sin(2x)}{\sin x - x}$

Ans:

(a) Since
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $xe^x = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$

$$\sum_{n=0}^{\infty} \frac{3^{n+1}}{n!} = 3e^3$$

(b)
$$\frac{1}{1\times 2} - \frac{1}{2\times 2^2} + \frac{1}{3\times 2^3} - \frac{1}{4\times 2^4} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \left(\frac{1}{2}\right)^{n+1} = \ln\left(1 + \frac{1}{2}\right) = \ln\frac{3}{2}$$

(c) $\lim_{x \to 0^+} \frac{\arctan(2x) - \sin(2x)}{\sin x - x} = \lim_{x \to 0^+} \frac{(2x - \frac{1}{3}(2x)^3 + \dots) - (2x - \frac{1}{3!}(2x)^3 + \dots)}{(x - \frac{1}{3!}x^3 + \dots) - x} = \lim_{x \to 0^+} \frac{-\frac{8}{6}}{-\frac{1}{6}} = 8$

5. (12%) Derive the Maclaurin series of $f(x) = \operatorname{arccot}(2x)$

Ans:

$$(\operatorname{arccot}(x))' = \frac{-1}{1+x^2} = \frac{-1}{1-(-x^2)} = -\sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^{n+1} x^{2n} |x| < 1$$

$$\operatorname{arcco} t(x) = C + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2n+1}}{2n+1}$$

Substitute x = 0, we get, $C = \frac{\pi}{2}$

arcco
$$t(x) = \frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2n+1}}{2n+1}$$

$$\operatorname{arcco} t(2x) = \frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} (2x)^{2n+1}}{2n+1} = \frac{\pi}{2} - 2x + \frac{8x^3}{3} - \frac{32x^5}{5} + \cdots.$$

6. (10%) Find the area of the shaded region bounded by the curves r = 1 + sin(θ) and r = 3sin(θ)

Ans:

Solve $r = 3\sin(\theta)$ and $r = 1 + \sin(\theta)$ we get $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$

$$A = 2\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [(3sin(\theta))^{2} - (1 + sin(\theta))^{2}] d\theta = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [8sin^{2}\theta - 1 - 2sin\theta] d\theta$$
$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left[8\frac{1 - \cos(2\theta)}{2} - 1 - 2sin\theta \right] d\theta$$
$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [3 - 4\cos(2\theta) - 2sin(\theta)] d\theta = 3\theta - 2sin(2\theta) + 2cos(\theta)]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$
$$= \pi$$

7. (10%) Find the area of the surface formed by revolving the polar graph $r = 2(1 + sin(\theta))$ about the $\theta = \frac{\pi}{2}$ over the interval $\frac{-\pi}{2} \le \theta \le \frac{\pi}{2}$

Ans:

$$\sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} = \sqrt{4(1 + \sin\theta)^{2} + 4\cos^{2}\theta} = 2\sqrt{2}\sqrt{1 + \sin\theta}$$

$$S = 2\pi \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} 2(1 + \sin(\theta))\cos(\theta) 2\sqrt{2}\sqrt{1 + \sin\theta}d\theta$$

$$= 8\sqrt{2}\pi \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} (1 + \sin(\theta))^{\frac{3}{2}}\cos(\theta) (Let \ u = 1 + \sin(\theta), du$$

$$= \cos(\theta)d\theta = 8\sqrt{2}\pi \int_{0}^{2} (u)^{\frac{3}{2}}du = \frac{16\sqrt{2}\pi}{5} \left[u^{\frac{5}{2}}\right]_{0}^{2} = \frac{128\pi}{5}$$