Calculus

Chien-Hong Cho 卓建宏

Department of Applied Mathematics National Sun Yat-sen University

September 15, 2021

Notations

1. A, B, \dots : sets; a, b, \dots : elements.

Definition

A set is a collection of objects.

Remark: A set is often represented in the following ways:

- 1. A is the set of all integers. (State directly).
- 2. $A = \{ objects | conditions \} = \{ objects : conditions \}.$
- 3. $A = \{$ List all the members $\}$.
- 2. "belong to" is denoted by " \in ".
- 3. "not belong to" is denoted by " \notin ". Ex: $a \in A$: a belongs to A; $b \notin B$: b is not in B.

4. $A \subseteq B$: Set *A* is contained in set *B*; $A \supseteq B$: *A* contain *B*.

 \nsubseteq : not contain; \subsetneqq : properly contain.

- 5. "because" is denoted by "...".
- 6. "therefore" is denoted by "∴".
- 7. . "for all" is denoted by " \forall ".
- 8. "exists" or "there is at least one" is denoted by "∃".

"there exists one and only one (unique)": $\exists !$ (or $\exists 1$).

- 9. "such that" is denoted by "s.t.".
- 10. α : alpha; β : beta; γ : gamma; δ : delta; λ : lambda; θ : theta; φ : phi;
 - ψ : psi; *σ*: sigma; *ω*: omega; *ε*: epsilon; Γ: Gamma; Λ: Lambda;
 - Σ: Sigma; Ω: Omega.

Number Systems

- 1. $\mathbb{N} = \{1, 2, \dots\}$: The positive integers (natural number).
- 2. \mathbb{Z} = $\{0,\,\pm 1,\,\pm 2,\,\cdots\}$: The integers.
- 3. $\mathbb{Q} = \{ \frac{q}{p} | p, q \in \mathbb{Z} \& p \neq 0 \}$: The <u>rational numbers</u>.
- 4. $\mathbb{R} = \mathbb{Q} \cup \{\text{irrational numbers}\}$: The <u>real numbers</u>.

$$\mathbb{N} \subsetneqq \mathbb{Z} \gneqq \mathbb{Q} \gneqq \mathbb{R}.$$

Definition

Let $-\infty < a < b < \infty$ be real numbers.

- 1. $(a, b) = \{x \in \mathbb{R} | a < x < b\}$: The <u>open interval</u> with end points *a*, *b*. 2. $(a, b] = \{x \in \mathbb{R} | a < x \le b\}$: The <u>half-open interval</u> with end points *a*, *b*. 3. $[a, b) = \{x \in \mathbb{R} | a \le x < b\}$: The <u>semi-open interval</u> with end points *a*, *b*.
- 4. $[a, b] = \{x \in \mathbb{R} | a \leq x \leq b\}$: The <u>closed interval</u> with end points a, b.
- 5. $(a, \infty) = \{x \in \mathbb{R} | a < x\}.$
- 6. $[a, \infty) = \{x \in \mathbb{R} | a \leq x\}.$
- 7. $(-\infty, a) = \{x \in \mathbb{R} | x < a\}.$
- 8. $(-\infty, a] = \{x \in \mathbb{R} | x \leq a\}.$
- 9. $\mathbb{R} = (-\infty, \infty).$

Sec. 0.1: Graphs and Models

Definition (The Cartesian Plane (The rectangular coordinate system))

A plane used to graphically represent order pairs of real numbers, formed by two real number lines intersecting at right angles.

Definition (The Distance Formula:)

• The distance between the points (x_1, y_1) and (x_2, y_2) in the plane is

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Definition (The Midpoint Formula:)

• The midpoint of the segment jointing the points (x_1, y_1) and (x_2, y_2) is

Graphs of Equations

Example (Graph of Equations)

Sketch the graph of the equation y = 3 - 0.5x.

Key Points

- Construct a table of values
- Plot these points
- Connect the points

C.-H. Cho (CCU)

Exercise

Sketch the graph of $y = x^2 - 2$

Solution

Intercepts of a Graph

Definition

- 1. The x-intercept of a line L is a (or (a, 0)) if L intersects x-axis at (a, 0).
- 2. The y-intercept of a line L is b (or (0, b)) if L intersects y-axis at (0, b).

Figure: One *y*-intercept, No *x*-intercept

Figure: Three *x*-intercepts, One *y*-intercept

Intercepts of a Graph

Figure: One *x*-intercept, Two *y*-intercepts

Figure: No intercepts

Finding intercepts

- To find *x*-intercepts, let *y* = 0 and solve the equation for *x*.
- To find *y*-intercepts, let x = 0 and solve the equation for *y*.

Example

Find the *x*- and *y*-intercepts of the graph of $y = x^3 - 4x$.

Solution

• Let
$$y = 0$$
. Then
 $0 = x^3 - 4x = x(x+2)(x-2),$
 $\implies x = 0, 2, -2$
 \implies Three *x*-intercepts : (0,0), (-2,0), and (2,0)

• Let
$$x = 0$$
. \implies One y-intercept: $(0, 0)$.

Symmetry of a Graph

Definition

- A graph is symmetric to *y*-axis if (-x, y) is on the graph whenever (x, y) is on the graph.
- A graph is symmetric to x-axis if (x, -y) is on the graph whenever (x, y) is on the graph.
- A graph is symmetric to the origin if (-x, -y) is on the graph whenever (x, y) is on the graph.

Example

Example

Test the graph $y = x^3 - 3x$ for symmetry with respect to (a) the *y*-axis; (b) the origin.

Solution

- (a) Test whether the point (-x, y) is on the graph. $y = (-x)^3 - 3(-x) = -x^3 + 3x$: is not an equivalent equation.
- (a) Test whether the point (-x, -y) is on the graph. $-y = (-x)^3 - 3(-x)$ which implies $y = x^3 - 3x$: is an equivalent equation.

Points of Intersection

Example (1)

Show the graphs of $y = x^2 - 3$ and y = x - 1 have two points of intersections (2, 1) and (-1, -2)

Solution

$$y = x^{2} - 3 = x - 1$$

$$\Rightarrow x^{2} - x - 2 = 0$$

$$\Rightarrow (x - 2)(x + 1) = 0$$

$$\Rightarrow x = 2 \text{ or } - 1$$

$$\Rightarrow (x, y) = (2, 1) \text{ or } (-1, -2)$$

The slope of a line

Definition

The "slope" of the line passing through the points (x_1, y_1) and (x_2, y_2) is

$$m=\frac{y_2-y_1}{x_2-x_1}\equiv\frac{\Delta y}{\Delta x}$$

where $x_1 \neq x_2$. Here, $\Delta x = x_2 - x_1$ and $\Delta y = y_2 - y_1$ denote the horizontal and vertical changes respectively.

Remarks

- If the line falls from left to right, then m < 0.
- If the line rises from left to right, then m > 0.
- If the line is horizontal, then m = 0.
- If the line is vertical, then *m* is undefined.

Examples

1. Find the slope of the line which passes through (-1, 1) and (5, 3).

Clearly,
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{5 - (-1)} = \frac{1}{3}$$
.

2. Find the slope of the line which passes through (-2, 5) and (3, 5).

Clearly,
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 5}{3 - (-2)} = 0.$$

3. Assume that (1, -3), (3, 5), (5, b), (a, 1) lie on the same line. Find *a*, *b*.

$$\therefore \frac{b-5}{5-3} = \frac{5-(-3)}{3-1} = 4 \implies b = 13. \text{ (linear extrapolation)}$$

$$\therefore \frac{1-(-3)}{a-1} = \frac{5-(-3)}{3-1} = 4 \implies a = 2. \text{ (linear interpolation)}$$

Writing Linear Equation.

Point-Slope form (點斜式)

The "point-slope" form of the equation with slope m, passing through the point (x_1, y_1) is

$$y - y_1 = m(x - x_1)$$
 (:: $\frac{y - y_1}{x - x_1} = m$, if $x \neq x_1$)

Two-Point form (兩點式)

The "two-point" form of the equation of a line passing through points (x_1, y_1) and (x_2, y_2) with $x_1 \neq x_2$ is

$$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) (x - x_1)$$

Slope-Intercept Form (斜截式)

The "slope-intercept" form of the equation of a line whose slope is *m* and whose *y*-intercept is (0, b) is y = mx + b.

Remark: $\therefore y - b = m(x - 0)$.

Example

Find equation of the line that passes through (1,3) and has slope m = 2.

$$\operatorname{sol}$$
: $2 = m = \frac{y-3}{x-1}$. $y - 3 = 2(x-1) \Rightarrow y = 2(x-1) + 3$.

Example

Find an equation of the line passing through (1,5) and (-3,7), and its corresponding slope-intercept form.

sol.

•
$$y-5=\left(\frac{7-5}{-3-1}\right)(x-1)=-\frac{1}{2}(x-1).$$

• The slope-intercept form is $y = -\frac{1}{2}x + \frac{11}{2}$.

Example

Find an equation of the line that has slope 3 and y-intercept -4.

sol. y = 3x + (-4).

Remarks

- The general form of a line is ax + by + c = 0 and its slope is -a/b if $b \neq 0$. ($\because y = -\frac{a}{b}x \frac{c}{b}$).
- A equation of the form ax + by + c = 0 is called a <u>linear equation</u> since the graph is a straight line.
- Vertical line: x = a.
- Horizontal line: y = b.
- Let the slopes of lines L_1 , L_2 be m_1 , m_2 , respectively.
 - (a) If L_1 and L_2 are parallel, then $m_1 = m_2$.
 - (b) If L_1 and L_2 are perpendicular ($\oplus \underline{a}$), then $m_1 \cdot m_2 = -1$.

• A parallel shift of the line does not change its slope (平移不影響斜率) • $\overline{OA}^2 + \overline{OB}^2 = \overline{AB}^2$ $\Rightarrow \left(\sqrt{(1-0)^2 + (m_1-0)^2}\right)^2 + \left(\sqrt{(1-0)^2 + (m_2-0)^2}\right)^2 = (m_1 - m_2)^2$ $\Rightarrow m_1 \cdot m_2 = -1.$

Parallel and Perpendicular

Let *L* be the line: ax + by = c. $(m = -\frac{a}{b})$

- (a) The equation of a line which is parallel to *L* can be assumed as ax + by = d.
- (b) The equation of a line which is perpendicular to *L* can be assumed as bx ay = d. $(m = \frac{b}{a})$

Example

Find equations of the lines that pass through the point (2, -1) and is (a) parallel to and (b) perpendicular to the line 3x - y = -1.

sol. (a) Let the equation be 3x - y = d. $\therefore d = 3 \cdot 2 - (-1) = 7$.

(b) Let the equation be x + 3y = d. $\therefore d = 2 + 3 \cdot (-1) = -1$.

Functions

Definition (Functions)

$$\begin{array}{ll} \mathsf{Input} \\ \mathsf{x} \in X \end{array} \implies \begin{array}{l} \mathsf{Function} \end{array} \Longrightarrow \begin{array}{l} \mathsf{Output} \\ y \in Y \end{array}$$

 A function can be though of as a machine that inputs values of the independent variable and outputs values of the dependent variable.

Example

$$y = 2 + 8x - 3x^2$$

- independent variable (自變數): x
- dependent variable (應變數): y

Definition

A function is a correspondence between a first set X, called the domain, and a second set Y, called the codomain, such that each member of the domain corresponds to exactly one member in the codomain.

Definition

The name of the function

$$f: X \to Y, \quad y = f(x)$$

function notation

Example

$$y = \frac{1-x}{2} \implies$$
 we write $f(x) = \frac{1-x}{2}$

• As
$$x = 3$$
, $f(3) = \frac{1-3}{2} = -1$.

• The value f(x) is called a function value.

Example

Let
$$f(x) = x^2 - 2x$$
. Find the value of the function at $x = 2$ and evaluate the expressions $f(x + \Delta x)$ and $\frac{f(x + \Delta x) - f(x)}{\Delta x}$.

sol.
$$f(2) = 2^2 - 2 \cdot 2 = 0.$$
$$f(x + \Delta x) = (x + \Delta x)^2 - 2(x + \Delta x) = x^2 + 2x\Delta x + (\Delta x)^2 - 2x - 2\Delta x.$$
$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{x^2 + 2x\Delta x + (\Delta x)^2 - 2x - 2\Delta x - (x^2 - 2x)}{\Delta x}$$
$$= \frac{2x\Delta x + (\Delta x)^2 - 2\Delta x}{\Delta x}$$
$$= 2x + \Delta x - 2.$$

Definition

Let X, Y be two nonempty sets.

f is function from X to Y ($f : X \mapsto Y$) if f assigns exactly one element y in Y to each element x in X. In this case, we write y = f(x). (read as "f of x")

- D(f) = X: domain of f The set of all values of the independent variables.
- Y: codomain of f.
- $R(f) = f(X) \equiv \{y \in Y \mid \exists x \in X \text{ s.t. } y = f(x)\} \subseteq Y$: range (image) of f The set of all values taken on the independent variables.

Example

Find the domain and range of each function.

a.
$$y = f(x) = \sqrt{x - 1}$$

b. $y = f(x) = \begin{cases} 1 - x, & x < 1 \\ \sqrt{x - 1}, & x \ge 1 \end{cases}$

sol.

- a. Need $x 1 \ge 0!$. The domain is $[1, \infty)$. The range is $[0, \infty)$.
- b. The domain is \mathbb{R} . The range is $[0, \infty)$.

Remark

Unless explicitly stated otherwise, the domain of a function *f* is the largest set in \mathbb{R} for which *f* is defined.

Remark

Definition

A piecewise-defined function is a function that is defined by two or more equations, each over a specified domain.

Example

Decide whether *y* is a function of *x*: (a)

)
$$x^2 + y = 1$$
; (b) $x + y^2 = 1$; (c) $x^2 + y^2 = 1$; (d) $x^2y + xy = 1$;

sol. $\forall x \in$ domain, $\exists ! y \text{ s.t. } y = f(x)$

(a)
$$\because y = 1 - x^2$$
. $\therefore y$ is a function of x .
(b) $\because y = \pm \sqrt{1 - x}$, not unique!! $\therefore y$ is not a function of x .
(c) $\because y = \pm \sqrt{1 - x^2}$, not unique!! $\therefore y$ is not a function of x .
(d) $\because y = \frac{1}{x^2 + x}$. $\therefore y$ is a function of x . (if $x \neq 0$!!)
i.e.: $D(f) = \mathbb{R} - \{0\}$ if we put $y = f(x)$.

Remark

Question

When will y be a function of x?

Answer

 \forall input *x* (\forall *x* \in domain), \exists ! output *y*.

Question

How to decide whether a curve defines a function of x?

Answer

The vertical line test: Every vertical line intersects the graph at most once.

Decide whether $x + y^2 = 1$ represents y as a function of x.

sol. No, some values of x determine two values of y.

Decide whether each graph represents y as a function of x.

Transformations of Functions

Let $f(x) = x^2$.

Transformations of Functions

Basic Types of Transformations

Let y = f(x).

- Horizontal shift *c* units to the right: y = f(x c).
- Vertical shift *c* units downward: y = f(x) c.
- Reflection about x- axis: y = -f(x).
- Reflection about y axis: y = f(-x).
- Reflection about the origin: y = -f(-x).

Definition (1 - 1 (one-to-one))

Let $f : X \mapsto Y$ be a function. f is said to be one-to-one (1 - 1) if for all $y \in f(X)$, there exists exactly one $x \in X$ such that y = f(x).

Or equivalently, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Or equivalently, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Remark

A function f is not 1 - 1 if

$$\exists x_1 \neq x_2 \in D(f) \text{ s.t. } f(x_1) = f(x_2).$$

Example

Decide whether the following functions are 1 - 1:

(a) f(x) = 2x - 3; (b) $f(x) = x^2 + 1$.

sol. (a) We need to check: if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Let
$$f(x_1) = f(x_2)$$
. $\therefore 2x_1 - 3 = 2x_2 - 3 \implies x_1 = x_2$.
 $\therefore f \text{ is } 1 - 1$.
(b) $\therefore f(-1) = (-1)^2 + 1 = 2 \& f(1) = 1^2 + 1 = 2 \text{ but } 1 \neq -1$.
 $\therefore f \text{ is not } 1 - 1$.

Horizon Line Test:

A function is 1 - 1 if every horizontal line intersects the graph of the function at most once.

Combinations of Functions

 Two functions can be combined by the operations of +, −, ×, ÷ to create new functions. For instance, f(x) ± g(x), f(x)g(x), f(x)/g(x) and etc..

Example

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \ (a_n \neq 0) \text{ is a polynomial function.}$$

n is a nonnegative integer and is called the degree of the polynomial function *f*, which is denoted by $n = \deg f(x)$.

② Let p(x), q(x) be polynomials functions with $q(x) \neq 0$. Then $f(x) = \frac{p(x)}{q(x)}$ is called a rational function.

Definition

f(x) is called an algebraic function if it can be expressed as a finite number of sums, differences, multiples, quotients and radicals involving x^n (ex : \sqrt{x}, \cdots). Otherwise, it is called transcendental. (ex : $\sin x, \cos x, \cdots$)

Combinations of Functions

$$\begin{array}{c} \text{Input} \\ x \in X \end{array} \Rightarrow \begin{array}{c} \text{Function} \\ g \end{array} \Rightarrow \begin{array}{c} \text{Output} \\ g(x) \end{array} \Rightarrow \begin{array}{c} \text{Function} \\ f \end{array} \Rightarrow \begin{array}{c} \text{Output} \\ f(g(x)) \end{array}$$

Example

(

Let
$$f(x) = x - 1$$
 and $g(x) = x^2$. Then
 $h(x) = f(x) - g(x) = -x^2 + x - 1$ and $k(x) = f(g(x)) = g(x) - 1 = x^2 - 1$.

Definition

Let $g : X \to Y$ (y = g(x)) and $f : W \to Z$ (z = f(w)) be two functions such that $R(g) \subseteq D(f)$. Then, the composite function of f and g is defined by

$$f \circ g : X \to Z$$
 s.t. $z = (f \circ g)(x) = f(g(x))$.

Remarks

- If $R(g) = g(X) \subseteq D(f)$, then $D(f \circ g) = X$.
- If $R(g) \nsubseteq D(f)$, then $D(f \circ g)$ is the largest set $A \subseteq X$ such that $g(A) \subseteq D(f)$.
- In general, $f \circ g \neq g \circ f$.

Let
$$f(x) = 3x + 4$$
 and let $g(x) = \sqrt{x^2 - 1}$. Find
(a) $D(f \circ g)$ and $(f \circ g)(x)$.
(b) $D(g \circ f)$ and $(g \circ f)(x)$.

sol. $D(f) = \mathbb{R}, R(f) = \mathbb{R}$ and $D(g) = (-\infty, -1] \cup [1, \infty), R(g) = [0, \infty).$ (a) $\therefore g(X) = R(g) \subset D(f) \Rightarrow f \circ g$ is defined on X. $\therefore D(f \circ g) = D(g) = (-\infty, -1] \cup [1, \infty)$ and $(f \circ g)(x) = f(g(x)) = 3g(x) + 4 = 3\sqrt{x^2 - 1} + 4.$ (b) $\therefore R(f) \not\subseteq D(g)$, we need to find $A \subseteq X$ s.t. $f(A) \subseteq D(g)$ That is, find x s.t. 3x + 4 > 1 or 3x + 4 < -1. $\therefore D(q \circ f) = A = (-\infty, -5/3] \cup [-1, \infty)$ and

$$(g \circ f)(x) = g(f(x)) = \sqrt{f(x)^2 - 1} = \sqrt{9x^2 + 24x + 15}.$$

Odd and Even Functions

Definition

- A function y = f(x) is called even(偶函數) if f(-x) = f(x).
- A function y = f(x) is called odd(奇函數) if f(-x) = -f(x).

Remark

- Let y = f(x) be an even function and (x, y) is on the graph of f. Then (-x, y) is also on the graph of f. That is, the graph of f is symmetric to y-axis.
- Let y = f(x) be an odd function and (x, y) is on the graph of f. Then (-x, -y) is also on the graph of f. That is, the graph of f is symmetric to the origin.

Determine whether each function is even, odd, or neither.

Inverse Functions

Definition

Let $f : X \mapsto Y$ be a function. Then f has an inverse if there exists a function $g : f(X) \mapsto X$ s.t.

$$f(g(y)) = y, \forall y \in f(X) \& g(f(x)) = x, \forall x \in X.$$

In this case, g is called the inverse function of f and is denoted by f^{-1} .

Remarks

• Let $f : X \mapsto Y$ have an inverse. Then $f^{-1} : f(X) \mapsto X$ and satisfies

$$f(f^{-1}(x)) = x, \ \forall x \in f(X)$$
 & $f^{-1}(f(x)) = x, \ \forall x \in X.$

f⁻¹(x) ≠ 1/f(x). Here f⁻¹ is just the label for the inverse function of f.
f has an inverse if and only if f is 1 − 1.

• The graph of *f* and f^{-1} are mirror images of each other w.r.t. (with respect to) the line y = x.

Example (A function without an inverse)

Show that the function $f(x) = x^2 - 1$ has no inverse function.

sol. $\therefore f(2) = 3 = f(-2) \Rightarrow f$ is not $1 - 1 \Rightarrow f$ has no inverse.

How to find f^{-1} algebraically?

To find the inverse of a function f algebraically:

1) Let
$$y = f^{-1}(x)$$
. ($\therefore f(y) = f(f^{-1}(x)) = x$.)

- 2) Solve f(y) = x for y.
- 3) Check the domain of f^{-1} (= the range of *f*) and replace *y* by $f^{-1}(x)$.

Example

Find the inverse of f(x) = 2x - 3

sol. Let $y = f^{-1}(x)$ be the inverse of f.

$$\therefore f(y) = f(f^{-1}(x)) = x \Rightarrow 2y - 3 = x \Rightarrow y = \frac{x+3}{2}.$$

$$\therefore R(f) = \mathbb{R}. \quad \therefore f^{-1}(x) = y = \frac{x+3}{2}, \ \forall x \in D(f^{-1}) = R(f) = \mathbb{R}.$$

Find the inverse function of $f(x) = \sqrt{2x-3}$

sol. Let $y = f^{-1}(x)$ be the inverse function of f.

$$\therefore f(y) = f(f^{-1}(x)) = x \implies \sqrt{2y - 3} = x \implies y = \frac{x^2 + 3}{2}.$$

$$\therefore R(f) = [0, \infty). \quad \therefore f^{-1}(x) = y = \frac{x^2 + 3}{2}, \ \forall x \in D(f^{-1}) = R(f) = [0, \infty).$$

Example (A function without a inverse function)

Show that the function $f(x) = x^2 - 1$ has no inverse function.

sol.
$$\therefore f(y) = x \Rightarrow y^2 - 1 = x \Rightarrow y = \pm \sqrt{x+1}$$
.

 \therefore y can not be defined as a function of $x \Rightarrow f$ has no inverse.

Angles and Degree Measure

Definition

- An angle has three parts: an <u>initial side</u>, a <u>terminal side</u>, and a <u>vertex</u>.
- An angle is in standard position when its initial side coincides with the positive x-axis and its vertex is at the origin.

- Positive angles are measured counterclockwise beginning with the initial side. Negative angles are measured clockwise.
- Angles having the same initial and terminal sides are called <u>coterminal</u>.

Remark

 θ and ϕ are coterminal. Then there exists $k \in \mathbb{Z}$ such that $\theta = \phi + k \cdot 360^{\circ}$.

Example

- **(**) 750° and 30° are coterminal. ($: 750^{\circ} = 30^{\circ} + 2 \cdot 360^{\circ}$).
- ② -120° and 600° are coterminal. (∵ $-120^{\circ} = 600^{\circ} + (-2) \cdot 360^{\circ}$).

Radian measure

Definition

Let θ be the central angle of a circular sector of radius 1.

The radian measure of θ is defined to be the length of the arc of the sector($\overline{\mathbb{R}}$) of radius 1.

Remark

 \therefore the circumference of the unit circle is $2\pi \Rightarrow 360^\circ = 2\pi$ radians.

:
$$1^\circ = \frac{\pi}{180}$$
 (radians) and 1 (radian) $= \frac{180^\circ}{\pi}$

Example

135° =
$$\frac{3\pi}{4}$$
 (radians); -90° = $-\frac{\pi}{2}$.
 $\frac{11\pi}{6} = 330^{\circ}; -\frac{5\pi}{4} = -225^{\circ}.$

The Trigonometric Functions

Definition

.

• Right triangle definition $\left(0 < \theta < \frac{\pi}{2}\right)$:

The Trigonometric Functions

Definition

• Circular function definition:

$$\sin \theta = \frac{y}{r}; \quad \cos \theta = \frac{x}{r}; \quad \tan \theta = \frac{y}{x}; \quad \cot \theta = \frac{x}{y}; \quad \sec \theta = \frac{r}{x}; \quad \csc \theta = \frac{r}{y}.$$

Formulas

Formulas I

•
$$\sin\theta\csc\theta = 1; \quad \cos\theta\sec\theta = 1; \quad \tan\theta\cot\theta = 1.$$

• $\tan\theta = \frac{\sin\theta}{\cos\theta} = \sin\theta\sec\theta; \quad \cot\theta = \frac{\cos\theta}{\sin\theta} = \cos\theta\csc\theta.$

(Pythagorean Identities)

 $\sin^2\theta + \cos^2\theta = 1; \quad \tan^2\theta + 1 = \sec^2\theta; \quad \cot^2\theta + 1 = \csc^2\theta.$

Formulas II

(Reduction Formulas)

Formulas III

(Sum and difference formulas)

(a)
$$\sin(\theta \pm \phi) = \sin \theta \cos \phi \pm \cos \theta \sin \phi$$
.

(b)
$$\cos(\theta \pm \phi) = \cos \theta \cos \phi \mp \sin \theta \sin \phi$$
.

(c)
$$\tan(\theta \pm \phi) = \frac{\tan \theta \pm \tan \phi}{1 \mp \tan \theta \tan \phi}$$

(Multiple-angle formulas)

(a)
$$\sin 2\theta = 2 \sin \theta \cos \theta$$
;
 $\cos 2\theta = 2 \cos^2 \theta - 1 = \cos^2 \theta - \sin^2 \theta = 1 - 2 \sin^2 \theta$.
(b) $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$; $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$.
(Half-angle formulas) $\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$; $\cos^2 \frac{\theta}{2} = \frac{1 + \cos \theta}{2}$.

• Let $(1, -\sqrt{3})$ be a point on the terminal side of θ .

$$\therefore r = \sqrt{1^2 + (-\sqrt{3})^2} = 2 \implies \sin \theta = -\frac{\sqrt{3}}{2}, \ \cos \theta = \frac{1}{2}, \ \tan \theta = -\sqrt{3}$$

	θ	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}$ (45°)	$\frac{\pi}{3}$ (60°)	$\frac{\pi}{2}$ (90°)
	$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined
	θ	π (180°)	$\frac{3\pi}{2}$ (270°)			
	$\sin heta$	0	-1			
	$\cos \theta$	-1	0			
	an heta	0	undefined			

Sin
$$\frac{4\pi}{3} = \sin\left(\pi + \frac{\pi}{3}\right) = -\sin\frac{\pi}{3} = -\sqrt{3}.$$

 cos $\frac{5\pi}{6} = \cos\left(\pi - \frac{\pi}{6}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}.$

 tan $\frac{7\pi}{4} = \tan\left(2\pi - \frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right) = -\tan\frac{\pi}{4} = -1.$

 Sin 15° = sin(45° - 30°) = sin $\frac{\pi}{4} \cos\frac{\pi}{6} - \cos\frac{\pi}{4} \sin\frac{\pi}{6} = \frac{\sqrt{6} - \sqrt{2}}{4}.$

 tan $\frac{5\pi}{12} = \tan\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \frac{\tan\frac{\pi}{4} + \tan\frac{\pi}{6}}{1 - \tan\frac{\pi}{4}\tan\frac{\pi}{6}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = 2 + \sqrt{3}.$

• Find
$$\theta$$
 such that $\sin \theta = \frac{1}{2}$.
 $\therefore \ \theta = \frac{\pi}{6} + 2k\pi \text{ or } \frac{5\pi}{6} + 2k\pi, \text{ where } k \in \mathbb{Z}.$
• Let $0 \le \theta < 2\pi$. Solve $\cos 2\theta = 2 - 3\sin \theta$.
 $\therefore 1 - 2\sin^2 \theta = 2 - 3\sin \theta \Rightarrow 2\sin^2 \theta - 3\sin \theta + 1 = 0.$
 $\therefore \sin \theta = \frac{1}{2} \text{ or } 1 \Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{2}.$

Graphs of Trigonometric Functions

Definition

A function f(x) is called a periodic function if there exists p > 0 such that f(x + p) = f(x), for all $x \in D(f)$.

In this case, the minimum of those positive p's is called the period of f.

The graph of $y = \sin x$:

Properties

	sin X		cos X		tan X	
0	Domain	\mathbb{R}		R	$x \neq \frac{\pi}{2} + n\pi$	
	Range	[-1,1]	[-1, 1]		R	
	Period	2π	1	2π	π	
		cot X se		ec X	CSC X	
	Domain	$x \neq n\pi$	$x \neq \frac{1}{2}$	$\frac{\pi}{2} + n\pi$	$x \neq n\pi$	
	Range	\mathbb{R}	$(-\infty, -1)$	$[] \cup [1,\infty)$) $(-\infty, -1] \cup [1, \infty)$	
	Period	π	2π		2π	
		Function		Period	Amplitude	
2	-	$bx ext{ or } y =$		$\frac{2\pi}{ b }$	a	
9	y = atan	bx or $y =$	a cot bx	$\frac{\pi}{ b }$	Not applicable	
	$y = a \sec \theta$	bx or $y =$	a csc bx	$\frac{2\pi}{ b }$	Not applicable	