If the limit does not exist or has an infinite limit, you should point it out. In addition, do not use the L'Hôpital's rule to solve the limit problem.

1. (16%) Find the following limit

(a)
$$\lim_{x \to 2} \frac{2x^3 - 3x^2 - 3x + 2}{x^2 + x - 6}$$

(b)
$$\lim_{x \to 0} \frac{(\sqrt{16+x-4})}{x}$$

(c) $\lim_{x \to \infty} \sqrt{3x^2 + 1} \tan \frac{1}{x}$

(d)
$$\lim_{x \to 0} x \sqrt{1 + \frac{4}{x^2}}$$

Ans:

(a)
$$\lim_{x \to 2} \frac{2x^3 - 3x^2 - 3x + 2}{x^2 + x - 6} = \lim_{x \to 2} \frac{(x+1)(x-2)(2x-1)}{(x-2)(x+3)} = \lim_{x \to 2} \frac{(x+1)(2x-1)}{(x+3)} = \frac{(2+1)(2\times 2-1)}{(2+3)} = \frac{9}{5}$$

(b)
$$\lim_{x \to 0} \frac{(\sqrt{16+x}-4)}{x} = \lim_{x \to 0} \frac{\sqrt{16+x}-4}{x} \frac{\sqrt{16+x}+4}{\sqrt{16+x}+4} = \lim_{x \to 0} \frac{16+x-16}{x(\sqrt{16+x}+4)}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{16+x}+4} = \frac{1}{8}$$

(c)
$$\lim_{x \to \infty} \sqrt{3x^2 + 1} \tan \frac{1}{x} = \lim_{x \to \infty} \frac{\sqrt{3x^2+1}}{x} x \tan \frac{1}{x} = (\text{Let } t = \frac{1}{x})$$

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{x} \lim_{t \to 0^+} \frac{\tan(t)}{t} = \lim_{x \to \infty} \sqrt{3 + \frac{1}{x^2}} = \sqrt{3}$$
$$\sqrt{1 + \frac{4}{x^2}} = \lim_{x \to 0^+} \sqrt{x^2 (1 + \frac{4}{x^2})} = \lim_{x \to 0^+} \sqrt{x^2 + 4} = 2 \text{ and } \lim_{x \to 0^-} x \sqrt{1 + \frac{4}{x^2}} =$$

(d) $\lim_{x \to 0^+} x \sqrt{1 + \frac{4}{x^2}} = \lim_{x \to 0^+} \sqrt{x^2 (1 + \frac{4}{x^2})} = \lim_{x \to 0^+} \sqrt{x^2 + 4} = 2$ and $\lim_{x \to 0^-} x \sqrt{1 + \frac{4}{x^2}} = \lim_{x \to 0^-} -\sqrt{x^2 (1 + \frac{4}{x^2})} = \lim_{x \to 0^-} -\sqrt{x^2 + 4} = -2$. Therefore, the limit does not exist!

2. (10%) Assume the following function is a differentiable function

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x > 0\\ ax + b, & x \le 0 \end{cases}$$

What is the value of *a* and *b*? **Ans:**

(a) Since
$$-1 \le \sin(\frac{1}{x}) \le 1$$
 for all $x \ne 0$, $-x^2 \le x^2 \sin(\frac{1}{x}) \le x^2$ for all $x \ne 0$

Furthermore $\lim_{x \to 0^+} x^2 = \lim_{x \to 0^+} -x^2 = 0$. According to the squeeze theorem

$$\lim_{x\to 0^+} x^2 \sin(\frac{1}{x}) = 0.$$

Sinc the function is differentiable thus it is continuous, we have $\lim_{x\to 0^+} f(x) =$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} ax + b = 0 \quad \to b = 0$$

(b) Considering the alternative form of derivative:

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 \sin(\frac{1}{x}) - 0}{x} \lim_{x \to 0^+} x \sin\left(\frac{1}{x}\right)$$

Since $-1 \le \sin(\frac{1}{x}) \le 1$ for all $x \ne 0$, $-|x| \le x \sin(\frac{1}{x}) \le |x|$ for all $x \ne 0$

Furthermore $\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} -|x| = 0$. According to the squeeze theorem

 $\lim_{x \to 0^+} x \sin(\frac{1}{x}) = 0$

Sinc the function is differentiable, we have $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} =$

$$\lim_{x \to 0^-} \frac{ax+b}{x} = 0 \quad \to a = 0$$

3. (9%) Assume f(1) = 8 and $\forall x \in (1,4)$ we have $f'(x) \ge 2$. What is the minimum possible value for f(4) (Hint: use the mean value theorem)

Ans:

According to the Mean value theorem, $\exists c \in (1,4)$ such that $f'(c) = \frac{f(4)-f(1)}{4-1} = \frac{f(4)-8}{3}$. From the problem we know that $f'(c) = \frac{f(4)-8}{3} \ge 2 \rightarrow f(4) \ge 14$

Therefore, the minimum possible value for f(4) is 14.

- 4. (12%) Remember that you can solve the derivative using the definition or the differentiation rule for the following question.
- (a) Let $f(x) = \frac{x(x-2)(x-3)(x-4)}{(x+2)(x+3)(x+4)}$, find f'(2).
- (b) Find the derivative of $f(x) = 2csc^2(\pi x)$
- (c) Let $x^3 + y^3 = 2$, find the value of $\frac{d^2y}{dx^2}$ when x = 1

Ans:

(a)
$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\frac{x(x - 2)(x - 3)(x - 4)}{(x + 2)(x + 3)(x + 4)} - 0}{x - 2} = \lim_{x \to 2} \frac{x(x - 3)(x - 4)}{(x + 2)(x + 3)(x + 4)} = \frac{4}{120} = \frac{1}{30}$$

(b) $f'(x) = 2 \times 2 \csc(\pi x) \times -\csc(\pi x) \cot(\pi x) \times \pi = -4\pi \csc^2(\pi x) \cot(\pi x)$

(c) Differentiate $x^3 + y^3 = 2$ with respect to x. We have $3x^2 + 3y^2 \frac{dy}{dx} = 0 \rightarrow$

$$\frac{dy}{dx} = \frac{-x^2}{y^2}$$
. When $x = 1 \rightarrow y = 1$, $\frac{dy}{dx} = \frac{-x^2}{y^2} = -1$.

$$\frac{d^2y}{dx^2} = \frac{-2xy^2 + x^22y\frac{dy}{dx}}{y^4}$$

When x = 1, y = 1 we have $\frac{d^2y}{dx^2} = \frac{-2+2(-1)}{1} = -4$.

5. (20%) Let
$$f(x) = x^2 + \frac{1}{x}$$

- (a) Find the critical numbers and the possible points of inflection of f(x)
- (b) Find the open intervals on which f is increasing or decreasing
- (c) Find the open intervals of concavity
- (d) Find all the asymptotes (Vertical/horizontal/Slant)
- (e) Sketch the graph of f(x) (Label any intercepts, relative extrema, points of inflection, and asymptotes)

Ans: Note that the original function is undefined at x = 0, therefore we should include it in the following table.

$$f(x) = x^{2} + \frac{1}{x} = \frac{x^{3} + 1}{x}, f'(x) = 2x - \frac{1}{x^{2}} = \frac{2x^{3} - 1}{x^{2}}$$
$$f''(x) = 2 + \frac{2}{x^{3}} = \frac{2(x^{3} + 1)}{x^{3}}$$

	(−∞,−1)	(-1,0)	$(0,\frac{1}{\sqrt[3]{2}})$	$(\frac{1}{\sqrt[3]{2}},\infty)$
測試值	-2	$\frac{-1}{2}$	$\frac{1}{2}$	1
f′的正負號	-	-	-	+
f "的正負號	+	-	+	+
結論	遞減/向上凹	遞減/向下凹	遞減/向上凹	遞增/向上凹

(a) Note that x is not define at x = 0, we should not include it in the critical numbers or possible points of inflection

The critical numbers are $x = \frac{1}{\sqrt[3]{2}} (f' = 0)$

Possible points of inflection: x = -1 (f'' = 0)

- (b) Increasing $(\frac{1}{\sqrt{2}}, \infty)$. Decreasing $(-\infty, 0), (0, \frac{1}{\sqrt{2}})$.
- (c) Upward: $(-\infty, -1), (0, \infty)$. Downward (-1, 0)
- (d) Since $\lim_{x \to \pm \infty} f(x) = \infty \to$ No horizontal asymptote

Since $\lim_{x \to -0^+} f(x) = \infty$ and $\lim_{x \to -0^-} f(x) = -\infty$ vertical asymptote at x = 0

There is no slant asymptote

(e) Graph

There is a local minimum at $x = \frac{1}{\sqrt{2}}$ and an inflection point at (-1,0)

6. (9%) Find a point on the graph $x = \sqrt{10y}$ that is closetst to point (0,4). (Becarefull about the domain)

Ans: The distance between (0,4) and a point (x, y) on the graph of $\sqrt{10y}$ is $d = \sqrt{(x-0)^2 + (y-4)^2} = \sqrt{10y + (y-4)^2}$ Minimize $d^2 = f(y) = 10y + (y-4)^2$, $y \ge 0$. Note that f'(y) = 10 + 2(y-4) = 2y + 2. The only critical point is y = -1. However, since it is ouside the domain, so the minimum should occur in the end point where y = 0. The point is thus (0,0).

7. (9%) Use differential to approximat tan(46°)

Ans: 46° is
$$\frac{\pi}{4} + \frac{\pi}{180}$$
. Let $f(x) = tan(x)$, $f'(x) = sec^2(x)$
 $f(x + \Delta x) \approx f(x) + f'(x)dx = tan(x) + sec^2(x)dx$
Choosing $x = \frac{\pi}{4}$ and $dx = \frac{\pi}{180}$.
 $f(x + \Delta x) = tan(46^\circ) \approx tan(\frac{\pi}{4}) + sec^2(\frac{\pi}{4})\frac{\pi}{180} = 1 + \frac{\pi}{90}$

8. (15%) Remember the meaning and the definition of definite integral when solving the following question

(a)
$$\int 3 + \cot^2(t) dt$$

- (b) $\int_0^5 5 |x 5| dx$
- (c) $\lim_{n \to \infty} 2\left(\frac{1+2+\dots+n}{n^2}\right)$

Ans:

(a)
$$\int 3 + \cot^2(t)dt = \int 2 + 1 + \cot^2(t)dt = \int 2 + \csc^2(t)dt = 2t - \cot(t) + C$$

(b) $\int_0^5 5 - |x - 5|dx = \frac{1}{2} \times 5 \times 5 = \frac{25}{2}$

Note the area can be considered as the area in the following graph:

(c) $\lim_{n \to \infty} 2\left(\frac{1+2+\dots+n}{n^2}\right) = \lim_{n \to \infty} \frac{2}{n} \left(\frac{1+2+\dots+n}{n}\right) = \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^n \frac{i}{n} = 2 \int_0^1 x \, dx = 1$