If the limit does not exist or has an infinite limit, you should point it out. In addition, do not use the L'Hôpital's rule to solve the limit problem.

1. (16%) Find the following limit

(a)
$$
\lim_{x \to 2} \frac{2x^3 - 3x^2 - 3x + 2}{x^2 + x - 6}
$$

(b)
$$
\lim_{x \to 0} \frac{(\sqrt{16 + x - 4})}{x}
$$

(c) $\lim_{x\to\infty}\sqrt{3x^2+1}\tan\frac{1}{x}$ \overline{r}

(d)
$$
\lim_{x \to 0} x \sqrt{1 + \frac{4}{x^2}}
$$

Ans:

(a)
$$
\lim_{x \to 2} \frac{2x^3 - 3x^2 - 3x + 2}{x^2 + x - 6} = \lim_{x \to 2} \frac{(x+1)(x-2)(2x-1)}{(x-2)(x+3)} = \lim_{x \to 2} \frac{(x+1)(2x-1)}{(x+3)} = \frac{(2+1)(2 \times 2-1)}{(2+3)} = \frac{9}{5}
$$

\n(b)
$$
\lim_{x \to 0} \frac{(\sqrt{16+x} - 4)}{x} = \lim_{x \to 0} \frac{\sqrt{16+x} - 4}{x} \frac{\sqrt{16+x} + 4}{\sqrt{16+x} + 4} = \lim_{x \to 0} \frac{16+x-16}{x(\sqrt{16+x} + 4)}
$$

$$
= \lim_{x \to 0} \frac{1}{\sqrt{16+x} + 4} = \frac{1}{8}
$$

\n(c)
$$
\lim_{x \to \infty} \sqrt{3x^2 + 1} \tan \frac{1}{x} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{x} \tan \frac{1}{x} = (\text{Let } t = \frac{1}{x})
$$

$$
\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{x} \lim_{t \to 0^+} \frac{\tan(t)}{t} = \lim_{x \to \infty} \sqrt{\frac{3 + \frac{1}{x^2}}{x^2}} = \sqrt{3}
$$

(d)
$$
\lim_{x \to 0^+} x \sqrt{1 + \frac{4}{x^2}} = \lim_{x \to 0^+} \sqrt{x^2 (1 + \frac{4}{x^2})} = \lim_{x \to 0^+} \sqrt{x^2 + 4} = 2
$$
 and $\lim_{x \to 0^-} x \sqrt{1 + \frac{4}{x^2}} =$
 $\lim_{x \to 0^-} -\sqrt{x^2 (1 + \frac{4}{x^2})} = \lim_{x \to 0^-} -\sqrt{x^2 + 4} = -2$. Therefore, the limit does not exist!

2. (10%) Assume the following function is a differentiable function

$$
f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x > 0 \\ ax + b, & x \le 0 \end{cases}
$$

What is the value of α and β ? **Ans:**

(a) Since
$$
-1 \leq \sin(\frac{1}{x}) \leq 1
$$
 for all $x \neq 0$, $-x^2 \leq x^2 \sin(\frac{1}{x}) \leq x^2$ for all $x \neq 0$

Furthermore $\lim_{x\to 0^+} x^2 = \lim_{x\to 0^+} -x^2 = 0$. According to the squeeze therorem

$$
\lim_{x \to 0^+} x^2 \sin(\frac{1}{x}) = 0.
$$

Sinc the function is differentiable thus it is continuous, we have $\lim_{x\to 0^+} f(x) =$

$$
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} ax + b = 0 \to b = 0
$$

(b) Considering the alternative form of derivative:

$$
\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 \sin(\frac{1}{x}) - 0}{x} \lim_{x \to 0^+} x \sin(\frac{1}{x})
$$

Since $-1 \leq \sin(\frac{1}{n})$ $\frac{1}{x}$) ≤ 1 for all $x \neq 0$, $-|x| \leq x \sin(\frac{1}{x})$ $\frac{1}{x}$) $\leq |x|$ for all $x \neq 0$

Furthermore $\lim_{x\to 0^+} |x| = \lim_{x\to 0^+} -|x| = 0$. According to the squeeze therorem

 $\lim_{x\to 0^+} x \sin(\frac{1}{x})$ $(\frac{1}{x}) = 0$

Sinc the function is differentiable, we have $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0}$ $\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}$ $\frac{f^{(1)}-f^{(0)}}{x-0}$ =

$$
\lim_{x \to 0^-} \frac{ax+b}{x} = 0 \quad \to a = 0
$$

3. (9%) Assume $f(1) = 8$ and $\forall x \in (1,4)$ we have $f'(x) \ge 2$. What is the minimum possible value for $f(4)$ (Hint: use the mean value theorem)

Ans:

According to the Mean value theorem, \exists $c \in (1,4)$ such that $f'(c) = \frac{f(4)-f(1)}{4}$ $\frac{f(-f(1))}{4-1}$ = $f(4)-8$ $\frac{f(4)-8}{3}$. From the problem we know that $f'(c) = \frac{f(4)-8}{3}$ $\frac{f_1 - 6}{3} \ge 2 \to f(4) \ge 14$

Therefore, the minimum possible value for $f(4)$ is 14.

- 4. (12%) Remember that you can solve the derivative using the definition or the differentiation rule for the following question.
- (a) Let $f(x) = \frac{x(x-2)(x-3)(x-4)}{(x+2)(x+3)(x+4)}$ $\frac{x(x-2)(x-3)(x-4)}{(x+2)(x+3)(x+4)}$, find $f'(2)$.
- (b) Find the derivative of $f(x) = 2csc^2(\pi x)$
- (c) Let $x^3 + y^3 = 2$, find the value of $\frac{d^2y}{dx^2}$ $\frac{d^2 y}{dx^2}$ when $x = 1$

Ans:

(a)
$$
f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\frac{x(x - 2)(x - 3)(x - 4)}{(x + 2)(x + 3)(x + 4)} - 0}{x - 2} = \lim_{x \to 2} \frac{x(x - 3)(x - 4)}{(x + 2)(x + 3)(x + 4)} = \frac{4}{120} = \frac{1}{30}
$$

\n(b) $f'(x) = 2 \times 2 \csc(\pi x) \times - \csc(\pi x) \cot(\pi x) \times \pi = -4\pi \csc^2(\pi x) \cot(\pi x)$
\n(c) Differentiate $x^3 + y^3 = 2$ with respect to x . We have $3x^2 + 3y^2 \frac{dy}{dx} = 0 \rightarrow$

 dx

$$
\frac{dy}{dx} = \frac{-x^2}{y^2}.
$$
 When $x = 1 \rightarrow y = 1$, $\frac{dy}{dx} = \frac{-x^2}{y^2} = -1$.

$$
\frac{d^2y}{dx^2} = \frac{-2xy^2 + x^2 2y \frac{dy}{dx}}{y^4}
$$

When $x = 1$, $y = 1$ we have $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} = \frac{-2+2(-1)}{1}$ $\frac{2(-1)}{1} = -4.$

- 5. (20%) Let $f(x) = x^2 + \frac{1}{x}$ $\boldsymbol{\chi}$
- (a) Find the critical numbers and the possible points of inflection of $f(x)$
- (b) Find the open intervals on which f is increasing or decreasing
- (c) Find the open intervals of concavity
- (d) Find all the asymptotes (Vertical/horizontal/Slant)
- (e) Sketch the graph of $f(x)$ (Label any intercepts, relative extrema, points of inflection,and asymptotes)

Ans: Note that the original function is undefined at $x = 0$, therefore we should include it in the following table.

$$
f(x) = x^2 + \frac{1}{x} = \frac{x^3 + 1}{x}, f'(x) = 2x - \frac{1}{x^2} = \frac{2x^3 - 1}{x^2}
$$

$$
f''(x) = 2 + \frac{2}{x^3} = \frac{2(x^3 + 1)}{x^3}
$$

(a) Note that x is not define at $x = 0$, we should not include it in the critical numbers or possible points of inflection

The critical numbers are $x = \frac{1}{3}$ $\frac{1}{\sqrt[3]{2}}(f'=0)$

Possible points of inflection: $x = -1$ ($f'' = 0$)

- (b) Increasing $\left(\frac{1}{3}\right)$ $\frac{1}{\sqrt[3]{2}}$, ∞). Decreasing $(-\infty, 0)$, $(0, \frac{1}{\sqrt[3]{2}})$ $\frac{1}{\sqrt[3]{2}}$.
- (c) Upward: $(-\infty, -1)$, $(0, \infty)$. Downward $(-1,0)$
- (d) Since $\lim_{x \to \pm \infty} f(x) = \infty \to \infty$ horizontal asymptote

Since $\lim_{x \to -0^+} f(x) = \infty$ and $\lim_{x \to -0^-} f(x) = -\infty$ vertical asymptote at $x = 0$

There is no slant asymptote

(e) Graph

There is a local minimum at $x = \frac{1}{3}$ $\frac{1}{\sqrt[3]{2}}$ and an inflection point at (-1,0)

6. (9%) Find a point on the graph $x = \sqrt{10y}$ that is closetst to point (0,4). (Becarefull about the domain)

Ans: The distance between (0,4) and a point (x, y) on the graph of $\sqrt{10y}$ is $d = \sqrt{(x-0)^2 + (y-4)^2} = \sqrt{10y + (y-4)^2}$ Minimize $d^2 = f(y) = 10y + (y - 4)^2$, $y \ge 0$. Note that $f'(y) = 10 +$ $2(y - 4) = 2y + 2$. The only critical point is $y = -1$. However, since it is ouside the domain, so the minimum should occur in the end point where $y = 0$. The point is thus (0,0).

7. (9%) Use differential to approximat tan(46°)

Ans: 46° is
$$
\frac{\pi}{4} + \frac{\pi}{180}
$$
. Let $f(x) = \tan(x)$, $f'(x) = \sec^2(x)$
\n $f(x + \Delta x) \approx f(x) + f'(x)dx = \tan(x) + \sec^2(x)dx$
\nChoosing $x = \frac{\pi}{4}$ and $dx = \frac{\pi}{180}$.
\n $f(x + \Delta x) = \tan(46^\circ) \approx \tan(\frac{\pi}{4}) + \sec^2(\frac{\pi}{4})\frac{\pi}{180} = 1 + \frac{\pi}{90}$

8. (15%) Remember the meaning and the definition of definite integral when solving the following question

$$
(a) \int 3 + \cot^2(t) dt
$$

- (b) $\int_0^5 5 |x 5| dx$
- (c) $\lim_{n \to \infty} 2(\frac{1+2+\dots+n}{n^2})$ $\frac{1}{n^2}$)

Ans:

(a)
$$
\int 3 + \cot^2(t)dt = \int 2 + 1 + \cot^2(t)dt = \int 2 + \csc^2(t)dt = 2t - \cot(t) + C
$$

\n(b) $\int_0^5 5 - |x - 5|dx = \frac{1}{2} \times 5 \times 5 = \frac{25}{2}$

Note the area can be considered as the area in the following graph:

(c) $\lim_{n \to \infty} 2(\frac{1+2+\dots+n}{n^2})$ $\frac{+\cdots+n}{n^2}$) = $\lim_{n\to\infty}\frac{2}{n}$ $\frac{2}{n} \left(\frac{1+2+\cdots+n}{n} \right)$ $\frac{+\cdots+n}{n}$) = $\lim_{n\to\infty}\frac{2}{n}$ $\frac{2}{n} \sum_{i=1}^{n} \frac{i}{n}$ \boldsymbol{n} $\frac{n}{i-1} \frac{i}{n} = 2 \int_0^1 x$ $\int_{0}^{1} x \, dx = 1$