If the limit does not exist or has an infinite limit, you should point it out. In addition, do not use the L'Hôpital's rule to solve the limit problem.

1. (16%) Find the following limit
(a) $\lim _{x \rightarrow 1} \frac{x^{3}-3 x+2}{x^{3}-x^{2}-x+1}$
(b) $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+1}-x\right)$
(c) $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^{2}}$
(d) $\lim _{x \rightarrow 3} \frac{\sqrt{3 x+1}}{x-3}$

Ans:
(a) $\lim _{x \rightarrow 1} \frac{x^{3}-3 x+2}{x^{3}-x^{2}-x+1}=\lim _{x \rightarrow 1} \frac{(x-1)^{2}(x+2)}{(x-1)^{2}(x+1)}=\lim _{x \rightarrow 1} \frac{(x+2)}{(x+1)}=\frac{(1+2)}{(1+1)}=\frac{3}{2}$
(b) $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+1}-x\right)=\lim _{x \rightarrow \infty} \frac{x\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\left(\sqrt{x^{2}+1}+x\right)}=\lim _{x \rightarrow \infty} \frac{x}{\left(\sqrt{x^{2}+1}+x\right)}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}+1}=\frac{1}{2}$
(c) $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^{2}}=\lim _{\theta \rightarrow 0} \frac{(1-\cos (\theta))(1+\cos (\theta))}{\theta^{2}(1+\cos (\theta))}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(\theta)}{\theta^{2}(1+\cos (\theta))}=\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\theta^{2}(1+\cos (\theta))}=$ $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \frac{\sin (\theta)}{\theta} \frac{1}{(1+\cos (\theta))}=1 \times 1 \times \frac{1}{2}=\frac{1}{2} \quad$ (Note $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$ from theorem 1.9)
(d) $\lim _{x \rightarrow 3^{+}} \frac{\sqrt{3 x+1}}{x-3}=\infty$ and $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{3 x+1}}{x-3}=-\infty$. Therefore, the limit does not exist!
2. (8%) Considering the following function.

$$
f(x)=\left\{\begin{array}{rr}
|x| \sin \left(\frac{1}{x}\right), & \mathrm{x} \neq 0 \\
0, & \mathrm{x}=0
\end{array}\right.
$$

(a) Is $f(x)$ continuous at $x=0$? Explain your answer.
(b) Is $f(x)$ differentiable at $x=0$? Explain your answer.

Ans:
(a) Since $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ for all $x \neq 0,-|x| \leq \sin \left(\frac{1}{x}\right) \leq|x|$ for all $x \neq 0$

Furthermore $\lim _{x \rightarrow 0}|x|=0\left(\lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0\right.$ and $\left.\lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=0\right)$ and $\lim _{x \rightarrow 0}-|x|=0$

According to the squeeze therorem $\lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{x}\right)=0$, we have

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{x}\right)=0=f(x)
$$

So $f(x)$ is continuous at $x=0$
(b) Considering the alternative form of derivative:

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{|x| \sin \left(\frac{1}{x}\right)-0}{x} \lim _{x \rightarrow 0^{+}} \frac{x \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)
$$

Since $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)$ doest not exist (Oscillation), $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ doest not exist!
We can conclude that the function is not differentiable at $x=0$.
3. (8%) Proof that there is only one intersect point between $f(x)=2 x-2$ and $g(x)=\cos x$. (Hint: use the mean value theorem)

Ans:
Let $F(x)=f(x)-g(x)=2 x-2-\cos x$, since $F(\pi)>0$ and $F(0)<0$. By the intermediate value theorem, it has at least one real root between π and 0 (which means there exists at least one intersecting point).

Using proof by contradiction, assume there exists a and b such that $F(a)=$ $F(b)=0, a \neq b$. According to the Mean value theorem (or Rolle's theorem), $\exists c \in$ (a, b) such that $F^{\prime}(c)=\frac{F(a)-F(b)}{a-b}=0$, contradict. $\left(F^{\prime}(x)=2-(-\sin x)=2+\right.$ $\sin x>0)$.

Therefore, there is only one intersecting point!
4. (15%) Remember that you can solve the derivative using the definition or the differentiation rule for the following question.
(a) Find the following limit. $\lim _{x \rightarrow 0} \frac{\cos (\pi+x)+1}{x}$
(b) Find the derivative of $f(x)=\frac{x^{3}+3 x-1}{x+1}$
(c) Let $f(x)=x \cos (x)-\tan (x)+2 \pi$, find $f^{\prime \prime}(x)$

Ans:
(a) Let $f(x)=\cos (x)$, then the limit is the derivative of $f(x)$ at $x=\pi\left(f^{\prime}(\pi)=\right.$ $\left.\lim _{\Delta x \rightarrow 0} \frac{\cos (\pi+\Delta x)-\cos (\pi)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\cos (\pi+\Delta x)+1}{\Delta x}\right)$. Which is $f^{\prime}(x)=-\sin (x)$ therefore $f^{\prime}(\pi)=-\sin (\pi)=0$.
(b) $f^{\prime}(x)=\frac{(x+1)\left(3 x^{2}+3\right)-\left(x^{3}+3 x-1\right)}{(x+1)^{2}}=\frac{2 x^{3}+3 x^{2}+4}{(x+1)^{2}}$
(c) $f^{\prime}=\cos (x)-x \sin (x)-(\sec x)^{2} \rightarrow f^{\prime \prime}=-\sin (x)-x \cos (x)-\sin (x)-$ $2 \sec x \sec x \tan x=-2 \sin (x)-x \cos (x)-2 \sec ^{2} x \tan x$
5. (8%) Given $x^{2}+\frac{y^{2}}{4}=1$, find all the tangent lines of the graph that pass the point $(3,0)$ (Note $(3,0)$ is not on the graph).
Ans:

$$
\begin{gathered}
\left(x^{2}+\frac{y^{2}}{4}\right)^{\prime}=(1)^{\prime} \\
2 x+2 \frac{y}{4} y^{\prime}=0 \\
y^{\prime}=\frac{-4 x}{y}
\end{gathered}
$$

Let (x, y) be the point on the graph that is on the tangent line pass through $(3,2)$

$$
y^{\prime}=\frac{-4 x}{y}=\frac{y-0}{x-3} \rightarrow y^{2}=-4 x^{2}+12 x \rightarrow 12 x=y^{2}+4 x^{2}
$$

According to the original equation, $y^{2}+4 x^{2}=4$, therefore, we have $12 x=4 \rightarrow$ $\mathrm{x}=\frac{1}{3}$.

Substitute back to the original equation, we have $\left(\frac{1}{3}\right)^{2}+\frac{y^{2}}{4}=1 \rightarrow y= \pm \frac{\sqrt{32}}{3}= \pm \frac{4 \sqrt{2}}{3}$

$$
y^{\prime}=\frac{-4 x}{y}=\frac{-\frac{4}{3}}{ \pm \frac{4 \sqrt{2}}{3}}=\mp \frac{1}{\sqrt{2}}
$$

Two tangent lines are at $\left(\frac{1}{3}, \frac{4 \sqrt{2}}{3}\right): y-0=-\frac{1}{\sqrt{2}}(x-3) \rightarrow y=-\frac{1}{\sqrt{2}}(x-3)$
At $\left(\frac{1}{3}, \frac{-4 \sqrt{2}}{3}\right): y-0=\frac{1}{\sqrt{2}}(x-3) \rightarrow y=\frac{1}{\sqrt{2}}(x-3)$
6. (15%) Let $f(x)=\frac{x^{3}}{(x+2)^{2}}$
（a）Find the critical numbers and the possible points of inflection of $f(x)$
（b）Find the open intervals on which f is increasing or decreasing
（c）Find the open intervals of concavity
（d）Find all the asymptotes（Vertical／horizontal／Slant）
（e）Sketch the graph of $f(x)$（Label any intercepts，relative extrema，points of inflection，and asymptotes）

Ans：Note that the original function is undefined at $x=-2$ ，therefore we should include it in the following table．

$f(x)=\frac{x^{3}}{(x+2)^{2}}, f^{\prime}(x)=\frac{(x+2)^{2} 3 x^{2}-x^{3} 2(x+2)}{(x+2)^{4}}=\frac{x^{3}+6 x^{2}}{(x+2)^{3}}=\frac{x^{2}(x+6)}{(x+2)^{3}}$				
$f^{\prime \prime}(x)=\frac{(x+2)^{3}\left(3 x^{2}+12 x\right)-\left(x^{3}+6 x^{2}\right) 3(x+2)^{2}}{(x+2)^{6}}=\frac{24 x}{(x+2)^{4}}$				
	$(-\infty,-6)$	$(-6,-2)$	$(-2,0)$	$(0, \infty)$
測試值	－7	－3	－1	1
f^{\prime} 的正負號	＋	－	＋	＋
$f^{\prime \prime}$ 的正負號	－	－	－	＋
結論	遞增／向下凹	遞減／向下凹	遞增／向下凹	遞增／向上凹

（a）The critical numbers are $x=0,-6$
Possible points of inflection：$x=0$
（b）Increasing $(-\infty,-6),(-2, \infty)$ ．Decreasing（ $-6,-2$ ）．
（c）Upward：$(0, \infty)$ ．Downward $(-\infty,-2)$ and $(-2,0)$
（d）Since $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty \rightarrow$ No horizontal asymptote
Since $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$ and $\lim _{x \rightarrow-2^{-}} f(x)=-\infty \quad$ vertical asymptote at $x=-2$

$$
\frac{x^{3}}{(x+2)^{2}}=x-4+\frac{12 x-16}{(x+2)^{2}} \text { (Using long division) }
$$

$\lim _{x \rightarrow \pm \infty} f(x)-\left(x-4+\frac{12 x-16}{(x+2)^{2}}\right)=0 \rightarrow y=x-4$ is a slant asymptote
（e）Graph

There is a local maximum at $x=-6$ and an inflection point at $(0,0)$
7. (15%) Remember the meaning and the definition of definite integral when solving the following question
(a) $\int \frac{2+t+t^{3}}{\sqrt{t}} d t$
(b) $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}\left(t^{3}+t^{6} \tan (t)\right) d t$
(c) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\ldots+\frac{1}{\sqrt{n+n}}\right)$

Ans:
(a) $\int \frac{2+t+t^{3}}{\sqrt{t}} d t=\int 2 t^{-\frac{1}{2}}+t^{\frac{1}{2}}+t^{\frac{5}{2}} d t=4 \sqrt{t}+\frac{2 t^{3 / 2}}{3}+\frac{2 t^{7 / 2}}{7}+C$
(b) Since $\tan (t)$ is an odd functions and t^{6} is an even function. We know that $t^{6} \tan (t)$ is an odd function. Moreover, since t^{3} is also an odd function, therefore $t^{3}+t^{6} \tan (t)$ is an odd function. We have $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}\left(t^{3}+t^{6} \tan (t)\right) d t=0$
(c) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\ldots+\frac{1}{\sqrt{n+n}}\right)=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}\left(\frac{\sqrt{n}}{\sqrt{n+1}}+\frac{\sqrt{n}}{\sqrt{n+2}}+\ldots+\frac{\sqrt{n}}{\sqrt{n+n}}\right)=$ $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{\sqrt{1+\frac{1}{n}}}+\frac{1}{\sqrt{1+\frac{2}{n}}}+\frac{1}{\sqrt{1+\frac{3}{n}}}+\ldots+\frac{1}{\sqrt{1+\frac{n}{n}}}\right)=\int_{0}^{1} \frac{1}{\sqrt{1+x}} d x=\left.2(x+1)^{\frac{1}{2}}\right|_{0} ^{1}=2 \sqrt{2}-2$
8. (9\%) Considering the function $f(x)=\cos (x)+2 \cos (2 x)+\cdots+n \cos (n x)$.

Proof that there exist at least one root between $(0, \pi)($ Hint: Let $F(x)=$ $\int_{0}^{x} f(t) d t$ and use the fundamental theorem of calculus as well as Rolle's theorem.)

Ans: Let $F(x)=\int_{0}^{x} f(t) d t$, since $f(t)$ is continuous on all real value, by the
fundamental theorem of calculus, $F^{\prime}(x)=f(x)$.
On the other hand, since $F(x)$ is differentiable on all real value $\left(F^{\prime}(x)=f(x)\right)$ and $F(0)=0, F(\pi)=\int_{0}^{\pi} f(t) d t=\sin (t)+\sin (2 t)+\cdots+\left.\sin (n t)\right|_{0} ^{\pi}=0$. By Rolle's theroerm, there is at least one number c in $(0, \pi)$ such that $F^{\prime}(c)=0$.
From above, we know that there is at least one number c in $(0, \pi)$ such that $f(c)=$ 0 which concludes the proof.
9. (6%) Evaluate $\int_{\frac{1}{4}}^{1} \frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}} d x$

Ans:
Let $u=1-\sqrt{x}, d u=\frac{-1}{2 \sqrt{x}} d x$

$$
\int_{\frac{1}{4}}^{1} \frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}} d x=-\int_{\frac{1}{2}}^{0} 2 \sqrt{u} d u=\left.\frac{4}{3} u^{\frac{3}{2}}\right|_{0} ^{\frac{1}{2}}=\frac{\sqrt{2}}{3}
$$

