If the limit does not exist or has an infinite limit, you should point it out. In addition, do not use the L'Hôpital's rule to solve the limit problem.

1. (16%) Find the following limit
(a) $\lim _{x \rightarrow 1} \frac{x^{3}-3 x+2}{x^{3}-x^{2}-x+1}$
(b) $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+1}-x\right)$
(c) $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^{2}}$
(d) $\lim _{x \rightarrow 3} \frac{\sqrt{3 x+1}}{x-3}$
2. (8%) Considering the following function.

$$
f(x)=\left\{\begin{array}{rr}
|x| \sin \left(\frac{1}{x}\right), & \mathrm{x} \neq 0 \\
0, & \mathrm{x}=0
\end{array}\right.
$$

(a) Is $f(x)$ continuous at $x=0$? Explain your answer.
(b) Is $f(x)$ differentiable at $x=0$? Explain your answer.
3. (8\%) Proof that there is only one intersect point between $f(x)=2 x-2$ and $g(x)=\cos x$. (Hint: use the intermediate value theorem and mean value theorem/Rolle's theorem)
4. (15%) Remember that you can solve the derivative using the definition or the differentiation rule for the following question.
(a) Find the following limit. $\lim _{x \rightarrow 0} \frac{\cos (\pi+x)+1}{x}$
(b) Find the derivative of $f(x)=\frac{x^{3}+3 x-1}{x+1}$
(c) Let $f(x)=x \cos (x)-\tan (x)+2 \pi$, find $f^{\prime \prime}(x)$
5. (8%) Given $x^{2}+\frac{y^{2}}{4}=1$, find all the tangent lines of the graph that pass the point $(3,0)$ (Note $(3,0)$ is not on the graph).
6. (15%) Let $f(x)=\frac{x^{3}}{(x+2)^{2}}$
(a) Find the critical numbers and the possible points of inflection of $f(x)$
(b) Find the open intervals on which f is increasing or decreasing
(c) Find the open intervals of concavity
(d) Find all the asymptotes (Vertical/horizontal/Slant)
(e) Sketch the graph of $f(x)$ (Label any intercepts, relative extrema, points of inflection, and asymptotes)
7. (15%) Remember the meaning and the definition of definite integral when solving the following question
(a) $\int \frac{2+t+t^{3}}{\sqrt{t}} d t$
(b) $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}\left(t^{3}+t^{6} \tan (t)\right) d t$
(c) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\ldots+\frac{1}{\sqrt{n+n}}\right)$
8. (9\%) Considering the function $f(x)=\cos (x)+2 \cos (2 x)+\cdots+n \cos (n x)$. Proof that there exists at least one root between $(0, \pi)($ Hint: Let $F(x)=$ $\int_{0}^{x} f(t) d t$ and use the fundamental theorem of calculus as well as Rolle's theorem.)
9. (6%) Evaluate $\int_{\frac{1}{4}}^{1} \frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}} d x$

