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Chapter

APPLICATIONS OF INTEGRATION

7.1 Summary

Section 7.1 Area of a region between two curves............. 2

1. Area of a region between two curves If f and g are contin-

uous on |a,b] and g(x) < f(x) for all x in |a,b|, then the area of the
region bounded by the graphs of f and g and the vertical lines x = a
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and t = b is

................................................................... 7
2. Integration as an accumulation process
Known precalculus formulaj ==  Representative element, —
New integration formulal. ... ... ... ... ... ... ... ... ... .. ... 22
Section 7.2 Volume: The Disk Method ...................... 23
3. The Disk Method (El#7%) To find the volume of a solid of

revolution with the Disk Method, use one of the following, as shown in
Figure 7.15.
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Horizontal axis of revolution Vertical axis of revolution

Volume = V — Volume = V —
b d

m [ [R(z)] dz m [Y[R(y)]* dy

30

4. Washer Method (¥ ) Consider a region bounded by an outer

radius R(z) and an inner radius 7(x). If the region is revolved about its

axis of revolution, the volume of the resulting solid is given by

5. Volumes of solids with known cross sections
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(a) For cross sections of area A(x) taken perpendicular to the z-axis,

b
Volume —/ A(x) dz. See Figure 7.24a
a

(b) For cross sections of area A(y) taken perpendicular to the y-axis,

d
Volume :/ A(y)dy.  See Figure 7.24b
C

Section 7.3 Volume: The Shell Method...................... 53

6. The Shell Method (##%i%) To find the volume of a solid of

revolution with the Shell Method, use one of the following, as show in
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Figure 7.29.

Horizontal axis revolution Vertical axis of revolution
Volume =V =27 fcdp(y)h(y) dy Volume=V =21 ffp(x)h(x) dx

Section 7.4 Arc length and surfaces of revolution........ ... 71

7. Arc length Let the function given by y = f(x) represent a smooth

curve on the interval [a,b]. The arc length (3h4%) of f between a and

b is
s = /ab\/1+ /()] d.

Similarly, for a smooth curve given by z = ¢(y), the arc length (i &)
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of g between c and d is

. Surface of revolution If the graph of a continuous function is

revolved about a line, the resulting surface is a surface of revolution
(BT ). .. 86

. Area of a surface of revolution Let y = f(x) have a con-

tinuous derivative on the interval |a,b|. The area S of the surface of
revolution formed by revolving the graph of f about a horizontal or ver-

tical axis is

b
S = 27?/ T(:C)\/l +[f'(x)]*dx v is a function of z
a
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where r(x) is the distance between the graph of f and the axis of revo-

lution. If x = g(y) on the interval [c, d], then the surface area is

S = 277/ \/1 y)|“*dy =z is a function of y

where r(y) is the distance between the graph of g and the axis of revo-

JULION. . .o, 04
Section 7.5 Work . ... . . 08

10. Work done by a constant force If an object is moved a dis-

tance D in the direction of an applied constant force F', then the work
(h) W done by the force is defined as W = FD. ................. 99

11. Work by a variable force If an object is moved along a straight

line by a continuously varying force F'(x), then the work W done by the
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force as the object is moved fromz =atox =0bis

n b
— |Ahl|qi>();AWi :/a F(x)dx
................................................................ 102
Section 7.6 Moments, centers of mass, and centroids . . ... 118
12. Moments and center of mass: one-dimensional system
Let the point masses m1, mo, ..., my be located at x{, x9,

(a) The moment about the origin (¥ /RE6G /%) is My = myz] +

moxo + -+« + Mnpln.

M
(b) The center of mass (H ') is & = =Y where m = mq + mo +
m
.-« + my, is the total mass (48H &) of the system.
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13. Moment and center of mass: two-dimensional system

Let the point masses m{, mo, ..., my, be located at (x1,y1),
(22,Y2), -+ (T, Yn).
(a) The moment about the y-axis (3 y ##) H3E) is My = miz1+
mox9 + - -+ + Mplnp.
(b) The moment about the z-axis (3 x $h69 14E) is My = myy; +
moyg + -+ + MpYn.

(c) The center of mass (¥ ) (Z,y) (or center of gravity) is

M M
T=— and §=—
m m
where m = mj 4+ msg + - - - + my, is the total mass (48H &) of the

system.
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14. Moments and center of mass of a planar lamina

Let f and g be continuous functions such that f(x) > g(x) on
la, b], and consider the planar lamina of uniform density p bounded by

the graphs of y = f(x), y = g(x), and a < z < b.

(a) The moments about the z- and y-axes are

M=o [ b [f @) + g‘””’)] (@) - gla)] da

2
b
M, = p / ¢ (f(z) — g(x)) da.

M M
(b) The center of mass (H ) (z,y) is given by & = Wy and y = Wx

where m = pff[f(a;) — g(x)] dx is the mass of the lamina.
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15. The Theorem of Pappus (4 | & 3%2) Let R be a region in a

plane and let L be a line in the same plane such that L does not intersect

the interior of R, as show in Figure 7.66. If r is the distance between the
centroid of R and the line, then the volume V of the solid of revolution

formed by revolving R about the line is

V =2mrA
where A is the area of R. (Note that 277 is the distance traveled by the
centroid as the region is revolved about the line.) ................ 149
Section 7.7 Fluid pressure and fluid force................... 152

16. Fluid pressure The pressure (J&77) on an object at depth h
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17.

in a liquid is
Pressure = P = wh

where w is the weight-density of the liquid per unit of volume. ... .. 154

Force exerted by a fluid
The force F' exerted by a fluid (#2764 71) of constant weight-

density w (per unit of volume) against a submerged vertical plane region

fromy=ctoy=dis

n

d
Few lm S hly)Ly)Ay = w / h(y)L(y) dy
HAH_>O 1=1 C

where h(y) is the depth of the fluid at y and L(y) is the horizontal length
of theregionat y..... ... ... ... . L. 159
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