CONTENTS

CONTENTS

2	Differentiation		
	2.1	Summary	1
Inc	lex		14

LIST OF TABLES

LIST OF TABLES

LIST OF FIGURES

LIST OF FIGURES

LIST OF FIGURES

Chapter 2

DIFFERENTIATION

2.1 Summary

Section 2.1 The derivative and the tangent line problem 2

1. Tangent line with slope m If f is defined on an open interval containing c, and if the limit

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = m$$

exists, then the line passing through (c,f(c)) with slope m is the ${f tangent}$ ${f line}$

(切線) to the graph of f at the point (c, f(c)).................6

2. If f is continuous at c and

$$\lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = \infty \quad \text{or} \quad \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = -\infty$$

is given by

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

5. alternative limit form of the derivative

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 Alternative form of derivative

2.1. SUMMARY

7. Differentiability implies continuity	If f is differentiable at $x =$
c, then f is continuous at $x=c$	
8. Relationship between continuity and	differentiability
(a) If a function is differentiable at $x=c$, the	nen it is continuous at $x=c$.
(b) It is possible for a function to be contidifferentiable at $x=c$.	inuous at $x=c$ and not be
Section 2.2 Basic differentiation rule	s and rates of change . 28
9. The Constant Rule (常數法則)	The derivative of a constant
function is 0 . That is, if c is a real number	then
$\frac{\mathrm{d}}{\mathrm{d}x}[c] = 0.$	

10. The Power Rule (簡單幕法則) If n is a rational number, then the function $f(x)=x^n$ is differentiable and

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^n] = nx^{n-1}.$$

For f to be differentiable at x=0, n must be a number such that x^{n-1} is defined on an interval containing $0,\ldots,33$

- 12. The Sum and Difference Rules (和差法則) The sum (or difference) of two differentiable functions f and g is itself differentiable.

2.1. SUMMARY

Moreover, the derivative of f + g (or f - g) is the sum (or difference) of the derivatives of f and g.

$$\frac{\mathrm{d}}{\mathrm{d}x}[f(x) + g(x)] = f'(x) + g'(x)$$
 Sum Rule
$$\frac{\mathrm{d}}{\mathrm{d}x}[f(x) - g(x)] = f'(x) - g'(x)$$
 Difference Rule

13. Derivatives of the sine and cosine functions (正弦和餘弦函數的導數)

$$\frac{\mathrm{d}}{\mathrm{d}x}[\sin x] = \cos x \qquad \frac{\mathrm{d}}{\mathrm{d}x}[\cos x] = -\sin x$$

Section 2.3 Product and Quotient Rules and higher-order deriv-

14. The Product Rule (積法則) The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of fg is the first function times the derivative of the second, plus the second function times the derivative of the first.

$$\frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

57

15. If f, g, and h are differentiable functions of x, then

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)g(x)h(x)\right] = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x).$$

$$(f_1f_2f_3\cdots f_n)'$$

2.1. SUMMARY

$$= f'_1 f_2 \cdots f_{n-1} f_n + f_1 f'_2 \cdots f_{n-1} f_n + \cdots + f_1 f_2 \cdots f'_{n-1} f_n + f_1 f_2 \cdots f_{n-1} f'_n$$

The Quotient Rule (商法則) The quotient f/g of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the derivative of f/g is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0$$

17. Derivatives of trigonometric functions (三角函數的導數)

$$\frac{\mathrm{d}}{\mathrm{d}x}[\tan x] = \sec^2 x \qquad \frac{\mathrm{d}}{\mathrm{d}x}[\cot x] = -\csc^2 x \qquad68$$

$$\frac{\mathrm{d}}{\mathrm{d}x}[\sec x] = \sec x \tan x \qquad \frac{\mathrm{d}}{\mathrm{d}x}[\csc x] = -\csc x \cot x$$

18. Binomial Theorem of nth derivative for product

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x), \qquad n = 1, 2, \dots$$

20. The Chain Rule (連鎖律) If y = f(u) is a differentiable function

2.1. SUMMARY 10

of u and u=g(x) is a differentiable function of x, then y=f(g(x)) is a differentiable function of x and

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$$

or, equivalently,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[f(g(x)) \right] = f'(g(x))g'(x).$$

A method for finding the derivative of a composition of functions....82

21. The General Power Rule (廣義幂法則) If $y = [u(x)]^n$, where u

is a differentiable function of x and n is a rational number, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = n[u(x)]^{n-1} \frac{\mathrm{d}u}{\mathrm{d}x}$$

or, equivalently,

$$\frac{\mathrm{d}}{\mathrm{d}x}[u^n] = nu^{n-1}u'.$$

86

22. "Chain Rule versions" of the derivatives of the six trigonometric functions:

$$\frac{d}{dx}[\sin u] = (\cos u)u'$$

$$\frac{d}{dx}[\tan u] = (\sec^2 u)u'$$

$$\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$$

$$\frac{d}{dx}[\sec u] = -(\csc^2 u)u'$$

$$\frac{d}{dx}[\sec u] = -(\csc u \cot u)u'$$

$$\frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$$

- 23. Guidelines for implicit differentiation
 - (a) Differentiate both sides of the equation with respect to x.

2.1. SUMMARY

(b) Collect all terms involving $\mathrm{d}y/\mathrm{d}x$ on the left side of the equation and
move all other terms to the right side of the equation.
(c) Factor $\mathrm{d}y/\mathrm{d}x$ out of the left side of the equation.
(d) Solve for dy/dx .
Section 2.6 Related rates
【

- 24. Guidelines for solving related-rate problems (解相關變率問題導引)
 - (a) Identify all given quantities and quantities to be determined. Make a sketch and label the quantities.
 - (b) Write an equation involving the variables whose rates of change either are given or are to be determined.

- (c) Using the Chain Rule, implicitly differentiate both sides of the equation with respect to time t.
- (d) After completing step 3, substitute into the resulting equation all known value for the variables and their rates of change. Then solve for the required rate of change.

INDEX

INDEX

alternative form 另一型式 of the derivative 導數, 3 Chain Rule 連鎖律, 9 Constant 常數 Rule 法則, 4 constant 常數 Multiple Rule 乘積法則, 5 continuity 連續

含, 4 cosecant function 餘割函數 derivative of 導數, 9 cosine function 餘弦函數 derivative of 導數. 6 cotangent function 餘切函數 derivative of 導數, 9 derivative(s) 導數 differentiability implies 可微分隱 alternative form 另一型式, 3 Chain Rule 連鎖律, 9

Constant Multiple Rule 常數乘積

法則, 5

Difference Rule 差法則, 5

General Power Rule 廣義幂法則,

10

of a function 函數, 2

of cosecant function 餘割函數, 9

of cosine function 餘弦函數, 6

of cotangent function 餘切函數, 9

of secant function 正割函數, 9

of sine function 正弦函數, 6

of tangent function 正切函數, 9

of trigonometric functions 三角函

數, 9

Power Rule 幂法則, 5

Product Rule 積法則, 7

Quotient Rule 商法則, 8

Simple Power Rule 簡單的幂法則,

5

Sum Rule 和法則, 5

derivative 導數

Constant Rule 常數法則, 4

of trigonometric functions 三角函

數, 11

Difference Rule 差法則, 5

differentiability 可微分 implies continuity 隱含連續, 4 differentiable function 可微函數 on the closed interval [a,b] 在閉區 間 [a,b], 3 differentiation rules 微分法則 chain 連鎖, 9 constant multiple 常數乘積, 5 constant 常數, 4 cosecant function 餘割函數, 9 cosine function 餘弦函數, 6 cotangent function 餘切函數, 9 difference 差, 5

general power 廣義幂, 10 power 幂, 5 product 積, 7 quotient 商, 8 secant function 正割函數, 9 Simple Power 簡單幂, 5 sine function 正弦函數, 6 sum 和, 5 tangent function 正切函數, 9 differentiation 微分 implicit 隱 guidelines for 導引, 11 function(s) 函數

derivative of 導數, 2 differentiable 可微, 3

General Power Rule 廣義幂法則 for differentiation 微分, 10 guidelines 導引

for implicit differentiation 隱函數 Product Rule 積法則, 7 微分, 11

for solving related-rate problems 解 相關變率問題, 12

implicit differentiation 隱函數微分 guidelines for 導引, 11

line(s) 直線

tangent 切線, 1

vertical 垂直, 2

with slope m 斜率 m, 1

power rule 幂法則

for differentiation 微分, 5

Quotient Rule 商法則, 8

related-rate problems, guidelines for solving 相關變率問題,解導引, 12

Rule 法則

Constant 常數, 4

secant function 正割函數 derivative of 導數, 9 Simple Power Rule 簡單幂法則, 5 sine function 正弦函數 derivative of 導數, 6 slope(s) 斜率 of a tangent line 切線, 1 Sum Rule 和法則, 5 sum(s)和 rule 法則, 5 tangent function 正切函數

tangent function 正切函數 derivative of 導數, 9 tangent line(s) 切線, 1

slope of 斜率, 1 vertical 垂直, 2 with slope m 斜率 m, 1 trigonometric function(s) 三角函數 derivative of 導數, 9 vertical tangent line 垂直切線, 2 切線 tangent line(s), 1 垂直 vertical, 2 斜率 m with slope m, 1 斜率 slope of, 1 三角函數 trigonometric function(s) 導數 derivative of, 9 可微分 differentiability

隱含連續 implies continuity, 4

可微函數 differentiable function

在閉區間 [a,b] on the closed inter- 和 sum(s)

val [a, b], 3

另一型式 alternative form

導數 of the derivative, 3

正切函數 tangent function

導數 derivative of, 9

正弦函數 sine function

導數 derivative of, 6

正割函數 secant function

導數 derivative of, 9

函數 function(s)

可微 differentiable, 3

導數 derivative of, 2

法則 rule, 5

和法則 Sum Rule, 5

法則 Rule

常數 Constant, 4

直線 line(s)

切線 tangent, 1

垂直 vertical, 2

斜率 m with slope m, 1

垂直切線 vertical tangent line, 2

相關變率問題,解導引 related-rate

problems, guidelines for solving, 12 差法則 Difference Rule, 5 商法則 Quotient Rule, 8 斜率 slope(s) 切線 of a tangent line, 1 常數 Constant 法則 Rule, 4 常數 constant 乘積法則 Multiple Rule, 5

連鎖律 Chain Rule, 9 連續 continuity

可微分隱含 differentiability implies, 常數乘積 constant multiple, 5

微分 differentiation

隱 implicit

導引 guidelines for, 11

微分法則 differentiation rules

正切函數 tangent function, 9

正弦函數 sine function, 6

正割函數 secant function, 9

和 sum, 5

差 difference, 5

商 quotient, 8

常數 constant, 4

連鎖 chain, 9 廣義幕 general power, 10 餘切函數 cotangent function, 9 餘弦函數 cosine function, 6 餘割函數 cosecant function, 9 幕 power, 5 積 product, 7 簡單幂 Simple Power, 5 廣義幂法則 General Power Rule 微分 for differentiation, 10 餘切函數 cotangent function 導數 derivative of, 9 餘弦函數 cosine function

導數 derivative of, 6 餘割函數 cosecant function 導數 derivative of, 9 幂法則 power rule 微分 for differentiation, 5 導引 guidelines 解相關變率問題 for solving relatedrate problems, 12 隱函數微分 for implicit differentiation, 11 導數 derivative 三角函數 of trigonometric functions, 11

常數法則 Constant Rule, 4 導數 derivative(s)

三角函數 of trigonometric functions, 9

另一型式 alternative form, 3

正切函數 of tangent function, 9

正弦函數 of sine function, 6

正割函數 of secant function, 9

函數 of a function, 2

和法則 Sum Rule, 5

差法則 Difference Rule, 5

商法則 Quotient Rule, 8

Rule, 5

連鎖律 Chain Rule, 9

廣義幂法則 General Power Rule, 10

餘切函數 of cotangent function, 9

餘弦函數 of cosine function, 6

餘割函數 of cosecant function, 9

幂法則 Power Rule, 5

積法則 Product Rule, 7

簡單的幂法則 Simple Power Rule,

5

積法則 Product Rule, 7

常數乘積法則 Constant Multiple 隱函數微分 implicit differentiation

INDEX 23

導引 guidelines for, 11 簡單幂法則 Simple Power Rule, 5