1. Find the following limit. (If the limit does not exist or has an infinite limit, you should point it out. In addition, also remember the definition of definite integral). (20%)

(a)
$$\lim_{n \to \infty} \frac{1}{\sqrt{2n \cdot 1 - 1^2}} + \frac{1}{\sqrt{2n \cdot 2 - 2^2}} + \dots + \frac{1}{\sqrt{2n \cdot n - n^2}}$$

(b)
$$\lim_{x \to a} \frac{x \int_a^x f(t)dt}{x - a}$$

(c)
$$\lim_{x\to 0^+} \frac{\ln(\sin x)}{\ln(\tan x)}$$

(d)
$$\lim_{x \to \infty} (1 + \frac{3}{x} + \frac{5}{x^2})^x$$

(e)
$$\lim_{x\to 0} \left(\frac{1}{2x} - \frac{1}{1 - e^{-2x}} \right)$$

- 2. Let $f(x) = 3 + x + e^x$ (9%)
 - (a) What is the value of $f^{-1}(x)$ when x = 4
 - (b) What is the value of $(f^{-1})'(x)$ when x = 4
 - (c) What is the value of $(f^{-1})''(x)$ when x = 4
- 3. Use the Mean Value Theorem to prove that $\forall a \ge 0$, we have $\frac{a}{1+a^2} \le \tan^{-1} a \le a$. (Hunt: use the theorem in the interval (0, a)) (8%)
- 4. Evaluate the following integral. (Hint: Try to use change of variables for all the problems) (15%)

(a)
$$\int x \cdot 10^{x^2} dx$$

(b)
$$\int \sqrt{1 + e^{2x}} dx$$

(c)
$$\int \frac{\sin(x)\cos(x)}{1+\sin^4(x)} dx$$

5. Find the equation of the tangent line $tan^{-1}(xy) = sin^{-1}(x+y)$ at (0,0). (8%)

6. Evaluate the following integral. (16%)

(a)
$$\int \frac{\ln x}{x^2} dx$$

(b)
$$\int_0^1 \ln(x^2 + 1) dx$$

(c)
$$\int_0^{\frac{\pi}{4}} tan^3 \theta sec^2 \theta d\theta$$

(d)
$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$

7. Let
$$f(x) = \frac{-8x^2 - 7x + 3}{(x+1)(x+2)(x^2+1)}$$
. (9%)

(a) Solve
$$\int f(x)dx$$

(b) Solve
$$\int_0^\infty f(x)dx$$

8. Determine whether the following integral diverges or converges. (9%)

(a)
$$\int_{1}^{9} \frac{1}{\sqrt[3]{x-1}} dx$$

(b)
$$\int_{1}^{\infty} \frac{1}{1+e^{x}} dx$$

(c)
$$\int_{1}^{\infty} \frac{\sqrt{1 + \frac{1}{x^4}}}{x} dx$$

9. Find the volume of the solid generated by revolving the region bounded by the graphs of $y \le xe^{-x}$, $y \ge 0$ and $x \ge 0$ about the x-axis. (6%)

Derivative	Integrals
$\frac{d\sin^{-1}u}{dx} = \frac{u'}{\sqrt{1-u^2}}$	$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + C$
$\frac{d\cos^{-1}u}{dx} = \frac{-u'}{\sqrt{1-u^2}}$	$\int \frac{du}{a^2 + u^2} = \frac{1}{a} tan^{-1} \frac{u}{a} + C$
$\frac{d\tan^{-1}u}{dx} = \frac{u'}{1+u^2}$	$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a}sec^{-1}\frac{ u }{a} + C$
$\frac{d\cot^{-1}u}{dx} = \frac{-u'}{1+u^2}$	
$\frac{d\sec^{-1}u}{dx} = \frac{u'}{ u \sqrt{u^2 - 1}}$	
$\frac{d \csc^{-1} u}{dx} = \frac{u'}{ u \sqrt{u^2 - 1}}$	