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VECTORS AND THE GEOMETRY OF SPACE

11.1 Summary

Section 11.1 Vectors intheplane.............................. 3

1. Component form of a vector in the plane If v is a vector
in the plane whose initial point is the origin and whose terminal point is

(v1,v2), then the component form (4= H ) of v is given by

v = (v1,v9) .
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The coordinates v and vy are called the components (4 %) of v. If

both the initial point and the terminal point lie at the origin, then v is
called the zero vector (5% ¥ ) and is denoted by 0 = (0,0). .. ... 11

2. Vector addition and scalar multiplication Let u = (uq, u9)

and v = (v, v9) be vectors and let ¢ be a scalar.

a) The vector sum () = 47) of u and v is the vector u+v = (uy + vy, u9 + v

c) The negative ( £1) of v is the vector —v = (—1)v = (—vy, —v9).

(a)
(b) The scalar multiple (4.#4Z) of c and u is the vector cu = (cuq, cus).
(c)
(d)

d) The difference (£)of uand visu—v = u+(—v) = (u] — vy, ug — v9).

3. Properties of vector operations Let u, v, and w be
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vectors in the plane, and let ¢ and d be scalars.

. u+v=v+u Commutative Property (X ##H'H)

2. (u+v)+w=u+(v+w) Associative Property (&5 HH)

3. u+0=u Additive Identity Property (Jwik 4% 7
4. u+(—u)=0 Additive Inverse Property (Jwik R L%
5. c(du) = (cd)u

6. (c+du=cu+du Distributive Property (5B HH)

7. clu+v)=cu+cv Distributive Property (5B EH)

8. 1l(u)=u, 0O(u)=0

4. Length of a scalar multiple  Let v be a vector and let ¢ be a scalar.
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Then

5. Unit vector in the direction of v If v is a nonzero vector in the

plane, then the vector

\Y% 1
u=—=—Y
Vi vl
has length 1 and the same directionasv........................... 24

6. Unit vector on the unit circle: u = (cos#,sinf) = cosf i+ sinb ]

v = ||v]| (cosf,sin@) = ||[v]cosOi+ ||v]sinfj .................. 30

Section 11.2 Space coordinates and vectors in space ....... 36
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7. Vectors in space (£ R P t5% ) Let u = (uq,u9, u3) and

v = (v1, v9,v3) be vectors in space and let ¢ be a scalar.

(a) Equality of Vectors: u = v if and only if uy = vy, ug = v9, and
u3 = vs.
(b) Component Form: If v is represented by the directed line segment

from P(p1, p2, p3) to Q(q1,¢2,q3), then

VvV = <U1,vz,’03> = <C11 — P1,492 — P2, 43 —P3> -

(c) Length: ||v|| = \/v% +v% + v%.

1
(d) Unit Vector in the Direction of v: ﬁ = (—) (v1,v9,v3), V F#
0

(e) Vector Addition: v +u = (v] + uq, v9 + u9, v3 + u3)
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(f) Scalar Multiplication: c¢v = (cvy, cvo, cvs)

................................................................. 51
8. Parallel vectors (-F47%£) Two nonzero vectors u and v are
parallel if there is some scalar ¢ such thatu=cv.................. 53
Section 11.3 The dot product of two vectors................ 62
9. Dot product The dot product (A4a) of u = (uy,u9) and

v = (v1,v2) is

u-V =ujvy + ugu.

The dot product (P14%) of u = (uqy,us, u3) and v = (vy,v9, v3) is

u-VvV =1ujv] + Uty + us3vs.
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10. Properties of the dot product Let u, v, and w be vectors

in the plane or in space and let ¢ be a scalar.

o

V=V-u Commutative property
(Vv+w)=u-v4+u-w Distributive property

(a)
(b)
(c)c(u-v)=cu-v=u-cv
(d)
(e)

11. Angle between two vectors (&= H&& )  If 0 is the angle

between two nonzero vectors u and v, then

u-v
cosf = . (11.1)
]l [Iv]
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12. Orthogonal vectors ((ExX®2)  The vectors u and v are orthogonal
(ER)ifu-v =0 70

13. Direction cosines (7 ##£5%) The angles o, 3, and v are the direction ar

(7 ¥ A) of v, and cosa, cos 3, and cos~y are the direction cosines

(7 k%) of v.

v : :
[Jcosa = ﬁ « Is the angle between v and i
\%
v : :
[Jcos B = 2 3 is the angle between v and j
\%
v .
[Jcosy = R v is the angle between v and k
\%

cos® a + cos® B + COSZ’)/ =1
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14. Projection (3% %) and vector components (¥ €4 ¥) Let

u and v be nonzero vectors. Moreover, let u = w{ + wy, where w1 is

parallel to v, and wy is orthogonal to v, as shown in Figure ?77.

[-] w1 is called the projection of u onto v or the vector component of u
along v, and is denoted by w{ = proj,, u.

[]wo = u — wy is called the vector component of u orthogonal to v.

15. Projection using the dot product If u and v are nonzero vectors,

then the projection of u onto v is given by
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16. Work () The work T done by a constant force F' as its point of

—
application moves along the vector P() is given by either of the following.

@)W =]
(b) W =F- PQ (Dot form)

pI‘OJ FH HPQH (Projection form)

Section 11.4 The cross product of two vectors in space .. .. 88
17. Cross product of two vectors in space Let
u=ujit+uj+uzsk and v=vji+wmj+uvk

be vectors in space. The cross product (#F41) of u and v is the vector

u X v = (ugv3 — u3vo) i — (ugvg — ugvy) j + (ugve — ugvy) k.
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18. Determinant form of u x v

uXxXyv =

= (ugu3 — u3va) i — (ugv3 — uzvy)j + (u1vy — ugvy) k

19. Algebraic property of the cross product (#MERECHEH)

i j k
ulp u2 u3

vl U2 U3

Uz u3

v2 U3

Ul u3

vl U3

J+

Ul u2

vl 02

Let u, v, and w be vectors in space, and let ¢ be a scalar.

(a)ux v=—(vxu)

(b)ux (v+w)=(uxv)+(uxw)
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20. Geometric properties of the cross product (sFfa%ATHEE)  Let

u and v be nonzero vectors in space, and let 6 be the angle between u

and v.

(a) u x v is orthogonal to both u and v.

(b) lux vl = [[a]| [|v][sin6

(c) u x v =0 if and only if u and v are scalar multiple of each other.
(d)

d) ||u x v|| = area of parallelogram having u and v as adjacent sides.
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21. The triple scalar product Foru=wuji+usj+uzk, v=ovji+
1) + v3k, and w = wii+ woJ + w3k, the triple scalar product
(4. & =F41) is given by

Uy U9 U3
u-(vxw)=|v v9 v3gl.

w1 w2 w3

22. Geometric property of triple scalar product (= £ 4765 ZATHHH)

The volume V' of a paralleled with vectors u, v, and w as adjacent

edges is given by
V=lu(vxw).
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................................................................ 113
Section 11.5 Lines and planes inspace...................... 116
23. Parametric equations of a line in space A line L paralleled to

the vector v = (a, b, c) and passing through the point P(x1,y1,21) is

represented by the parametric equations (5 #3\)

r=x1+at, y=y;+0bt, and 2z =z + ct.

24. Symmetric equations (#4472 ) of the line

T—r Y-y 22

Symmetric equations
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25. Standard equation of a plane in space (% Bl ¥ F @ #4124 X))

The plane containing the point (x1,¥1, z1) and having normal vector

n = (a, b, c) can be represented by the standard form of the equation of

a plane

26. General form (—#x %) of the equation of a plane in space

ar +by+cz+d=0 General form of equation

27. Distances between a point and a plane (-F @31 3:69%E4)  The
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distance between a plane and a point () (not in the plane) is

PQ x|
—_— . n
D = i P -
|n|
where P is a point in the plane and n is normal to the plane....... 140

28. The distance between the point Q)(xg, yo, 29) and the plane given by
axr +by+cz+d=0is
p o lazo—2) +0(yo —y) te(o—2)l 5 _ lazo+ byo + czp + ¢
Va2 + b2+ 2 Va2 + b2+ 2
where P(x1,%1, 21) is a point in the plane and d = —(ax| + by + cz1).
143

29. Distances between a point and a line in space (& B ¥ 4 $2 25 6 JE & )
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The distance between a point () and line in space is given by

where u is a direction vector for the line and P is a point on the line.145
Section 11.6 Surfaces inspace............................... 149

30. Cylinder Let C' be a curve in a plane and let L be a line not
in a parallel plane. The set of all lines parallel to L and intersecting C' is

called a cylinder (). C is called the generating curve (£ uh4%)

(or directrix) of the cylinder, and the parallel lines are called rulings

31. Equation of cylinders The equation of a cylinder whose ruling are

parallel to one of the coordinate axes contain only the variables corre-
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sponding to the othertwo axes. ........... ... ... ... ... .......... 153

32. Quadric surface The equation of a quadric surface

(=K i) in space is a second-degree equation in three variables. The

general form (—Ax#) of the equation is

AxZ+By2+C’z2+ny+E:vz+Fyz+Gx+Hy+]z+J:O.

There are six basic types of quadric surfaces: ellipsoid (% @), hyperboloid

(X4 s @), hyperboloid of two sheets (% % % ¢h @), elliptic cone
(#4f @), elliptic paraboloid (#5E #s4 @), and hyperbolic paraboloid
(ERIME). .o 156

33. Surface of revolution If the graph of a radius function r is re-
volved about one of the coordinate axes, the equation of the resulting

surface of revolution (7€ %5 ¥ @) has one of the following forms.
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(a) Revolved about the z-axis: 3> + 22 = [r(x)]

(b) Revolved about the y-axis: z2 + 2% = [r(y)]?

(c) Revolved about the z-axis: z° + y° = [r(2)]?

Section 11.7 Cylindrical and spherical coordinates ......... 173

34. The cylindrical coordinate system In a cylindrical coordinate syster
(Bl A= 4% 2 %), a point P in space is represented by an ordered triple
(1,8, 2).

(a) (r,0) is a polar representation of the projection of P in the xy-plane.

(b) z is the directed distance from (r,0) to P.
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35. Cylindrical to rectangular (Bl 2|4 A):

20

xr=rcosf, y=rsinf, z==z

Rectangular to cylindrical (& A 2| B A):
J
:E7

2

r ::1:2+y2, tanf = 2=z

36. The spherical coordinate system Inaspherical coordinate system
(k@ 2 AZ 2 %), a point P in space is represented by an ordered triple
(0,0, 0).

1. p is the distance between P and the origin, p > 0.

2. 0 is the same angle used in cylindrical coordinates for r > 0.

s
3. ¢ is the angle between the positive z-axis and the line segment O P,
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0<¢<m.

Note that the first and third coordinates, p and ¢, are nonnegative. p is

the lowercase Greek letter rho, and ¢ is the lowercase Greek letter phi.

189

37(a) Spherical to rectangular:
xr = psingcosf, y=psingsinf, 2z = pcosoa.

(b) Rectangular to spherical:

2z
,02 = 7° +y2 —1—22, tanf = g, @ = arccos .
L \/x2+y2+z2

(c) Spherical to cylindrical (r > 0):

r? = p281n2¢, =0, z=pcoso.
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22

(d) Cylindrical to spherical (r > 0):

p:\/T2—|—22, 0=20, gb—arccos( - )
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Additive Inverse Property of Vectors @~ . Property & #ui
= S} bR R
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coordinate system 2 A% A4
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spherical 3@, [20

. - & h)
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determinant form
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12
cylinder 4=, 17
directrix of 4,

equations of F#Z R, (17
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rulings of & & 4%,

17

17
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Parallel vectors F47@ =, 6 product FAx
parallel 47 of two vectors in space % ] ¥ &5
vectors ¥ =, [0 e =, |10
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18

a quadric surface =X ¥y @,
sum(s) #=
of two vectors WA ®) &,

surface of revolution 7& ¥ eh @,

18

surface dh @

#

cylindrical 4&, [17

quadric =X, (18
symmetric equations, line in space
MafEN > £AEHGEL (14

triple scalar product =& 444

geometric property of &1 THH,

13

triple scalar product 4. & =& 44,

13

vector(s) @&

addition ik, [2
associative property of %
2

commutative property of X &k

",
Additive Identity Property #wik ¥
Additive Inverse Property #m ik &
angle between two & A, [7|
component form of -2 X,

components 4~ ¥,

TA&MHH,

10

cross product of Jh4a,
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difference of two W18 £ w = 2% Mg kAR, (10
direction angles of 7 & A, projection of & %4, 9

direction cosines of 7 W83, scalar multiplication #2474, 2
Distributive Property 482 'H scalar product of #.& 47,

dot product of A#x, 6 sum #=,

in space = M ¥, triple scalar product = & % & 44,
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P #& dot product w & for vectors,
4B HEH Distributive Property for, K %% negative of a vector,

7 7 #2.3\, equation(s)
R $FHH Commutative Property @# & of a line

of, = [Hl, % ¥ in space, parametric,
h & 7 X, form of work, [10
#% %1% B projection using the, 9 %= M, #4#% in space, symmetric,

W Bl & & of two vectors, 0
MH properties of, %= W P & -F @ of a plane in space
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PI1#& inner product
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M A& for the dot product, 7 2 A B 2 2 X, standard form of
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the equation of

— X @ a quadric surface,

18

7% M ¥ #-F @ a plane in space,

— A general form

15

— X e &9 7 #2 3\, of the equation

of a quadric surface, 18

£EHFEF@H AN of the

equation of a plane in space,

—X¢h@ quadric surface, |18

15

¥ ¥ % wh @ hyperboloid of one sheet,
16
xR @ ellipsoid, (18
W Bl Yads @ elliptic paraboloid, |18
4@ elliptic cone, |18
2 eh Pt hyperbolic paraboloid,
18
% 3 4 wh @0 hyperboloid of two sheets,
16

F A2 X g — & R general form of =F 447 triple scalar product

the equation of, (18

& ATPEH geometric property of, [13

FAREANGEER A, standard form = F oA 6 LT H'T geometric
g

of the equations of, [18

property of triple scalar product,
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of,
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& /£ length
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AL 69 Bk dh 8% generating curve of a 28 7 #2 X parametric equations

cylinder, 17 % M P& B & of a line in space,
AL /0 69 B &8 rulings of a cylinder, ]
1/ % ¥ ¢h @ surface of revolution, (18
F AR product XK @ AR & # spherical coordinate
= H T &R & Z of two vectors in system, [20
space, [10) [ 4= 2 4% cylindrical coordinates
%, scalar PP A A converting to rectan-
Bl &) & M AR product of two vec- gular, 20
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and a plane, [15 2w P4 @ hyperbolic paraboloid,
LEEM YT EB AT IEHE be- (18
tween a point and a line in space, % #h @ hyperboloid
16, [17 ¥ ¥ of one sheet, (18
#8 directrix # 3 of two sheets, 18

A of a cylinder, [17
K &) ¥ zero vector,
HEr 2N > EFHGHEE sym-

metric equations, line in space,

W3k @ ellipsoid, [18
% Bl ¥4y @ elliptic paraboloid, (18
4 elliptic cone, |18
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