1. (20%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n-1)}{3 n+4}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}$
(c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n+1}$
(d) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n(\ln n)[\ln (\ln n)]^{2}}$
(e) $\sum_{n=1}^{\infty}(\sqrt[n]{n}-1)$
2. (8%) Consider the function.

$$
f(\mathrm{x})=\frac{1}{2 x-1}, \mathrm{x} \neq \frac{1}{2}
$$

(a) Find the power series expansion of $p(\mathrm{x})$ of f expand at the point $\frac{1}{3}$ and determine its interval of convergence.
(b) Write $p(\mathrm{x})=\sum_{n=0}^{\infty} a_{n}\left(x-\frac{1}{3}\right)^{n}$. Is $\sum_{n=0}^{\infty} a_{n}\left(\frac{2}{3}\right)^{n}=f(1)=1$? and why?
3. (10%)
(a) Find the Maclaurin series for $\arccos (x)$.
(b) Find the radius and interval of convergence of the Maclaurin series for $\arccos (x)$
4. (8%) Use a power series to approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$ with an error of less than 0.001 .
5. (9\%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function).
(a) $1-\frac{\pi^{2}}{4^{2} \times 2!}+\frac{\pi^{4}}{4^{4} \times 4!}-\frac{\pi^{6}}{4^{6} \times 6!}+\cdots$
(b) $\frac{1}{\sqrt{3}}-\frac{1}{3(\sqrt{3})^{3}}+\frac{1}{5(\sqrt{3})^{5}}-\frac{1}{7(\sqrt{3})^{7}}+\cdots$
(c) $\lim _{x \rightarrow 0} \frac{\tan (x)-\sin (x)}{x^{2}}$
6. (8\%) Let $f(\mathrm{x})=x^{6} e^{x^{3}}$. Try to evaluate the high order derivative $f^{(60)}(0)$.
7. (8%) Find the area of the region which is inside the circle $r=6 \cos (\theta)$ and outside the cardioid $r=2(1+\cos (\theta))$. (Both are represented in polar coordinates).
8. (5\%) Find the arc length of $r=e^{\theta}$ from $\theta=0$ to $\theta=2 \pi$.
9. (12%) Classify the following surface. If it is a quadratic surface, you should further classify it into six basic types of quadratic surface.
(a) $\mathrm{z}=x^{2}+3 y^{2}$
(b) $x^{2}+y^{2}-2 z=0$
(c) $r^{2}=z^{2}+2$ (this representation is in cylindrical coordinates)
(d) $\rho=4 \sec (\Phi)$ (this representation is in spherical coordinates)
10. (12\%) Evalauate the following expression.
(a) $\lim _{t \rightarrow 1} \sqrt{t} \boldsymbol{i}+\frac{\ln t}{t^{2}-1} \boldsymbol{j}+\frac{1}{t-1} \boldsymbol{k}$
(b) $\lim _{t \rightarrow 0} \frac{\sin 2 t}{t} \boldsymbol{i}+e^{-t} \boldsymbol{j}+5 \boldsymbol{k}$
(c) Let $\mathbf{r}(\mathrm{t})=3 \mathrm{ti}+(\mathrm{t}-1) \mathbf{j}, \mathbf{u}(\mathrm{t})=\mathrm{t} \mathbf{i}+t^{2} \mathbf{j}+\frac{2}{3} t^{3} \boldsymbol{k}$, find $\frac{d}{d t}[\boldsymbol{r}(t) \cdot \boldsymbol{u}(t)]$
(d) $\int\left(3 \sqrt{t} \boldsymbol{i}+\frac{2}{t} \boldsymbol{j}+6 \boldsymbol{k}\right) d t$

