1. (20%) Find the following limit. (If the limit does not exist, you should point it out).

Hint: Change of variables may be useful here

- (a) $\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2}$ (b) $\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2 + y^2 + z^2}$ (c) $\lim_{(x,y)\to(0,0)} \frac{1 - \cos(x^2 + y^2)}{x^2 + y^2}$
- (d) $\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2}{4x^2y 2y^3}$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

- 2. (16%) Evaluate the following problems
- (a) Let $f(x, y) = \int_{y}^{x} \sin(t^2) dt$, find f_x and f_y
- (b) Let $f(x, y) = x\sin(y) + ye^{xy}$, find all the second partial derivatives of f
- (c) Let $z = f(x, y) = x^2 + y^2$, x = s + t, y = s t, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$
- (d) Find an equation of the tangent plance to the surface $9x^2 + y^2 + 4z^2 = 25$ at (0, -3, 2)
- 3. (6%) Let $f(x, y) = 2022 \frac{x^2}{4} \frac{y^2}{2}$, express the limit $\lim_{t \to 0} \frac{f(1+2t,2+t) f(1,2)}{t}$ as the directional derivative of f and evaluate the value of the limit.
- 4. (8%) Find the critical points of $f(x, y) = x^3 + y^2 2xy + 7x 8y + 2$. Which of them give rise to maximum values, minimum values and saddle points?
- 5. (6%) Find the minimum and maximum distance from the curve $x^2 + xy + y^2 = 1$ to the origin point (0,0).

6. (20%) Evaluate the following expression

(a)
$$\int_{0}^{1} \int_{y}^{1} \frac{\sin(x)}{x} dx dy$$

(b) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sin(\sqrt{x^{2}+y^{2}}) dy dx$
(c) $\int_{0}^{\frac{\pi}{2}} \int_{1}^{2} x^{2} \sin(y) dx dy$
(d) $\int_{0}^{1} \int_{0}^{1+\sqrt{y}} \int_{0}^{xy} y dz dx dy$
(e) $\int_{1}^{2} \int_{2u-2}^{u} e^{(v-u+1)^{2}} dv du$

- 7. (6%) Find the area of the surface given by $z = f(x, y) = 9 y^2$ that lies above the region *R* where *R* is a triagle with vertices (-3,3), (0,0), (3,3)
- 8. (6%) Find the volume of the solid inside both $x^2 + y^2 + z^2 = 36$ and $(x-3)^2 + y^2 = 9$.
- 9. (6%) Evaluate $\int \int \int_Q \frac{z}{\sqrt{x^2 + y^2 + z^2}} dV$ where Q is a solid region inside the sphere $x^2 + y^2 + z^2 = 9$ and above xy-plane.
- 10. (6%) Use a change of variables to find the volume of the solid region lying below the surface $z = f(x, y) = \frac{x}{1+x^2y^2}$ and above the plane region *R* where *R* is a region bounded by xy = 5, xy = 1, x = 1, x = 5.