Assignment 3

1. Find the nth Maclaurin polynomial for the function.

$$f(x) = \frac{1}{1-x}$$
, $n = 5$

2. Find the nth Taylor polynomial for the function, centered at c.

$$f(x) = x^2 \cos x$$
 , $n = 2$, $c = \pi$

3. Find the interval of convergence of the power series.

$$\sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{(n+1)4^{n+1}}$$

4. Use the power series $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$, |x| < 1 to find a power series for the function, centered at 0, and determine the interval of convergence.

$$f(x) = \ln\left(x^2 + 1\right)$$