Assignment 3

1. Find the nth Maclaurin polynomial for the function.

$$
f(x)=\frac{1}{1-x} \quad, \quad n=5
$$

2. Find the nth Taylor polynomial for the function, centered at c .

$$
f(x)=x^{2} \cos x \quad, \quad n=2 \quad, \quad c=\pi
$$

3. Find the interval of convergence of the power series.

$$
\sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{(n+1) 4^{n+1}}
$$

4. Use the power series $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \quad, \quad|x|<1 \quad$ to find a power series for the function, centered at 0 , and determine the interval of convergence.

$$
f(x)=\ln \left(x^{2}+1\right)
$$

