
Assignment 2

1. Use the Direct Comparison test to determine the convergence or divergence of the series.
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(cosn) + 2√
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2. Use the Limit Comparison test to determine the convergence or divergence of the series.
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3. Determine the convergence or divergence of the series.
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4. Use the Ratio Test to determine the convergence or divergence of the series.
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5. Use the Root Test to determine the convergence or divergence of the series.
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sol:

1.

(cosn) + 2√
n

≥ 1√
n

for n ≥ 1

Therefore ,
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diverges by comparison with the divergent p-series
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2.
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Therefore ,
∞∑
n=1

n

(n+ 1)2n−1
converges by a limit comparison

with the convergent geometric series
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3. (a)
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Diverges by the nth-Term Test

(b)
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Converges by Theorem 9.14

4.
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Therefore, the series diverges by the Ratio Test.
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Therefore, by the Root Test, the series diverges.
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