Assignment 13

1. Evaluate the triple iterated integral.
(a) $\int_{0}^{1} \int_{0}^{x} \int_{0}^{\sqrt{x} y} x d z d y d x$
(b) $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{5} \rho^{2} \sin \phi d \rho d \phi d \theta$
2. Use a triple integral to find the volume of the solid bounded by the graphs of the equations.

$$
z=\sqrt{x}, y=x+2, y=x^{2}, \text { first octant }
$$

3. Use a change of variables to find the volume of the solid region lying below the surface $z=f(x, y)$ and above the plane region R.

$$
f(x, y)=(x+y) e^{x-y}
$$

R : region bounded by the square with vertices $(4,0),(6,2),(4,4),(2,2)$

