Assignment 11

1. Find a set of parametric equations for the tangent line to the curve of intersection of the surfaces at the given point.

$$
z=\sqrt{x^{2}+y^{2}}, 5 x-2 y+3 z=22,(3,4,5)
$$

2. Find all relative extrema and saddle points of the function.

$$
\text { (a) } f(x, y)=-5 x^{2}+4 x y-y^{2}+16 x+10 \text { (b) } f(x, y)=\sqrt[3]{x^{2}+y^{2}}+2
$$

3. Use Lagrange multipliers to find the indicated extrema, assuming that x, y, and z are positive.

$$
\begin{gathered}
\text { Maximize : } f(x, y, z)=x+y+z \\
\text { Constraint : } x^{2}+y^{2}+z^{2}=1
\end{gathered}
$$

4. Use Lagrange multipliers to find the indicated extrema of f subject to two constraints, assuming that x, y, and z are nonnegative.

Minimize : $f(x, y, z)=x^{2}+y^{2}+z^{2}$
Constraint : $x+2 z=6, x+y=12$

