Assignment 10

1. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ using the appropriate Chain Rule.

$$
w=x^{2}+y^{2}+z^{2}, x=t \sin s, y=t \cos s, z=s t^{2}
$$

2. Differentiate implicitly to find the first partial derivatives of a.
(a) $x \ln y+y^{2} a+a^{2}=8$
(b) $a-\sqrt{x-y}-\sqrt{y-z}=0$
3. Find the directional derivative of the function at P in the direction of \mathbf{v}.

$$
f(x, y)=e^{-\left(x^{2}+y^{2}\right)}, P(0,0), \mathbf{v}=\mathbf{i}+\mathbf{j}
$$

4. Use the gradient to find the directional derivative of the function at P in the direction of $\overrightarrow{P Q}$.

$$
f(x, y, z)=\ln (x+y+z), P(1,0,0), Q(4,3,1)
$$

5. Find the gradient of the function and the maximum value of the directional derivative at the given point.

$$
f(x, y)=\frac{x+y}{y+1},(0,1)
$$

