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Chapter 3

APPLICATIONS OF DIFFERENTIATION

3.1 Summary

Section 3.1 Extrema on aniinterval............................ 3
1. Extrema Let f be defined on an interval I containing
C.

1. f(c) is the minimum (FM&) of f on I if f(c) < f(z) for all x in
I.
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2. f(c) is the maximum (F KX4E) of fon I if f(c) > f(z) for all x in
I.

The minimum and maximum of a function on an interval are the

extreme values (#144), or extrema (#%144) (the singular form of ex-

trema is extremum), of the function on the interval. The minimum and
maximum of a function on an interval are also called the absolute minimum
(2 #3 -:4) and absolute maximum (2 #3& KX 44 ), or the global minimi
(&% ]*E) and global maximum (4 3%k KX 44), on the interval. 5

2. The Extreme Value Theorem (#1& % )] If f is continuous on a

closed interval |a,b], then f has both a minimum and a maximum on

the interval.
A theorem which guarantees the existence of an absolute max and an

absolute min for any continuous function over a closed interval. ...... 6
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3. Relative extrema (#a¥f4%14)

1. If there is an open interval containing ¢ on which f(c) is a maximum,
then f(c) is called a relative maximum (48¥f#& K 44) of f, or you

can say that f has a relative maximum at (c, f(c)).

2. If there is an open interval containing ¢ on which f(c) is a minimum,
then f(c) is called a relative minimum (#8%} 474 ) of f, or you

can say that f has a relative minimum at (c, f(c)).

The plural of relative maximum is relative maxima, and the plural of
relative minimum is relative minima. Relative maximum and relative

minimum are sometimes called local maximum (/& 345 K 4% ) and

local minimum (&34 4), respectively......................... 9

4. Critical number Let f be defined at c. If f'(c) =0 orif fis
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not differentiable at ¢, then ¢ is a critical number (E&S5+3) of f.. 13

5. Relative extrema occur only at critical numbers If f has a

relative minimum or relative maximum at x = ¢, then ¢ is a critical
number of f.. . . . . 14

6. Guidelines for finding extrema on a closed interval To find

the extrema of a continuous function f on a closed interval [a,b], use
the following steps.

(a) Find the critical numbers of f in (a,b).

(b) Evaluate f at each critical number in (a,b).

(c) Evaluate f at each endpoint of [a, b].

(d) The least of these values is the minimum. The greatest is the maxi-

mum.
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Section 3.2 Rolle’s Theorem and the Mean Value Theorem 24

7. Rolle’s Theorem (% i) Let f be continuous on the closed

interval |a, b| and differentiable on the open interval (a,b). If

then there is at least one number c in (a, b) such that f'(c) = 0.
A theorem of calculus that ensures the existence of a critical point be-

tween any two points on a "nice” function that have the same y-value.

27

8. Mean Value Theorem (1t € %) If f is continuous on the

closed interval |a, b] and differentiable on the open interval (a,b), then
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there exists a number ¢ in (a, b) such that
Ir N f(b) — f(a)
f (C> o b—a .

A major theorem of calculus that relates values of a function to a value of

its derivative. Essentially the theorem states that for a "nice” function,

there is a tangent line parallel to any secant line.................... 35

Section 3.3 Increasing and decreasing functions and the First
Derivative Test

9. Increasing and decreasing functions

A function f is increasing (3£3%) on an interval if for any two

numbers x1 and x9 in the interval, x1 < x9 implies f(x1) < f(x9).

A function f is decreasing (J£ ) on an interval if for any two numbers

r1 and x9 in the interval, x1 < x9 implies f(z1) > f(x9)........... 46
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10. Test for increasing and decreasing functions (% #3&3g ~ JE RS

Let f be a function that is continuous on the closed interval

la, b] and differentiable on the open interval (a,b).
(a) If f/(z) > 0 for all z in (a,b), then f is increasing on [a, b].
(b) If f/(z) < 0 for all z in (a,b), then f is decreasing on [a, b].

(c) If f'(z) =0 for all z in (a,b), then f is constant on [a, b].

11. Guidelines for finding intervals on which a function is increasing or

Let f be continuous on the interval (a,b). To find the open intervals

on which f is increasing or decreasing, use the following steps.

(a) Locate the critical numbers of f in (a,b), and use these numbers to

determine test intervals.
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(b) Determine the sign of f/(x) at one test value in each of the intervals.
(c) Use Theorem 3.5 to determine whether f is increasing or decreasing

on each interval.

These guidelines are also valid if the interval (a,b) is replaced by an

interval of the form (—o00,0), (a,00), or (—00,00). .......ocou.... 52

12. The First Derivative Test (—F E#i&x <) Let ¢ a critical

number of a function f that is continuous on an open interval I con-

taining c. If f is differentiable on the interval, except possibly at ¢, then

f(c) can be classified as follows.

(a) If f/(x) changes from negative to positive at c, then f has a
relative minimum (A8¥ &) at (¢, f(¢)).

(b) If f/(x) changes from positive to negative at ¢, then f has a
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relative maximum (#a$ 4= X144) at (¢, f(c)).

(c) If f/(x) is positive on both sides of ¢ or negative on both sides of c,

then f is neither a relative minimum nor a relative maximum.

A method for determining whether an inflection point is a minimum,

maximum, or neither. .. ... . 57
Section 3.4 Concavity and the Second Derivative Test .. ... 71
13. Concavity Let f be differentiable on an open interval I. The

graph of f is concave upward (W& _E) on I if f is increasing on the

interval and concave downward (W& ) on I if f/ is decreasing on
the interval. . ... . [

14. Test for concavity (MW HAR5) Let f be a function whose second

derivative exists on an open interval I.
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(a) If f”(x) > 0 for all z in I, then the graph of f is concave upward on

I.
(b) If f”(x) < 0 for all z in I, then the graph of f is concave downward
on [.
................................................................. 76
15. Point of inflection Let f be a function that is continuous on

an open interval and let ¢ be a point in the interval. If the graph
of f has a tangent line at this point (¢, f(c)), then this point is a
point of inflection (K& ¥ %5) of the graph of f if the concavity of f
changes from upward to downward (or downward to upward) at the point.
83

16. Points of inflection If (¢, f(c)) is a point of inflection of the
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graph of f, then either f”(c) = 0 or f” does not exist at x =c. .. .. 84

17. Second Derivative Test (% =% % ik <€) that f'(c) = 0

and the second derivative of f exists on an open interval containing c.

(a) If f”(c) > 0, then f has a relative minimum at (c, f(c)).
(b) If f”(c) < 0, then f has a relative maximum at (c, f(c)).

If f”(c) =0, the test fails. That is, f may have a relative maximum,
a relative minimum, or neither. In such cases, you can use the First
Derivative Test.

A method for determining whether a critical point is a relative minimum

OF MAXIMUIM. « . o o e e e e e e e e e e e e, 86

Section 3.5 Limits at infinity............................... ... 90

18. Limits at infinity Let L be a real number.
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(a) The statement lim;_,»c f(z) = L means that for each ¢ > 0 there
exists an M > 0 such that |f(z) — L| < € whenever x > M.

(b) The statement lim,_._~ f(x) = L means that for each € > 0 there
exists an N < 0 such that |f(x) — L| < € whenever x < N.

................................................................. 93
19. Horizontal asymptote :  Theliney = L isa horizontal asymptote
(K -F#7 4 42) of the graph of f if
lim f(xr)=L or lim f(x)= L.
T—— 0O T—00
................................................................. 95

20. Limits at infinity If r is a positive rational number and c is any
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real number, then

, C
lim — = 0.
rx—oo T

Furthermore, if " is defined when 2z < 0, then
C

lim — = 0.
r——oo "

21. Guidelines for finding limits at +oo of rational functions

(a) If the degree of the numerator is less than the degree of the denomi-

nator, then the limit of the rational function is 0.

(b) If the degree of the numerator is equal to the degree of the denomi-
nator, then the limit of the rational function is the ratio of the leading

coefficients.
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(c) If the degree of the numerator is greater than the degree of the de-

nominator, then the limit of the rational function does not exist.

22. Limits at +o0o of rational functions Let f

rational function (% 32 &#) where p(x) = amx’™ + -+ + ap and
q(x) = bpx™ + - - - + by are polynomials. Then

0 ifm<n
- _ dm fm=n
lim r(z) =473

T—30
a :
Sgn(—m>oo ifm>n
\
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)
0 ifm<n
am, r
i — ) IT1mMm =N
:1:—1>IPOOT($> < bm a
(—1)"™ " sgn (—m> oo ifm>n
\ bn
where sgn(z) = 1 if x > 0, sgn(x) = 0 if x = 0 and sgn(x) = —1 if
T < O 105
23. Infinite limits at infinity Let f be a function defined on the

interval (a, 00).

(a) The statement lim; .~ f(x) = 0o means that for each positive num-
ber M, there is a corresponding number N > 0 such that f(z) > M

whenever £ > N.

(b) The statement lim;_,~ f(x) = —o0 means that for each negative
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number M, there is a corresponding number N > 0 such that f(z) <
M whenever x > N.

Section 3.6 A summary of curve sketching ................. 117

24. Guidelines for analyzing the graph of a function

(a) Determine the domain and range of the function.
(b) Determine the intercepts, asymptotes, and symmetry of the graph.

(c) Locate the z-values for which f’(x) and f”(x) either are zero or do
not exist. Use the results to determine relative extrema and points of

inflection.
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25. Slant asymptote The line y = max + b is a slant asymptote
(E##LER) of the graph of f if

lim f(x)—(mx+b)=0 or lim f(x)— (mx+b) =

T—— OO T— 00
................................................................ 127
26. Slant asymptote : If the line y = max + b is a slant asymptote
(FE#H# 442 of the graph of f, then
m = lim f(@) b= lim f(z)—mz
r——0ox0 T LT——0C
or
m = lim@ b= lim f(x)— mx
rT—0K0 T— 00
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Section 3.7 Optimization problems.......................... 143

27. Guidelines for solving applied minimum and maximum problems

(a) Identify all given quantities and all quantities to be determined. If

possible, make a sketch.

(b) Write a primary equation (E%7 42 \) for the quantity that is to

be maximized or minimized. (A review of several useful formulas from

geometry is presented inside the back cover.)

(c) Reduce the primary equation to one having a single independent vari-

able. This may involve the use of secondary equations (X %7 42 )

relating the independent variables of the primary equation.

(d) Determine the feasible domain of the primary equation. That is, de-
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termine the values for which the stated problem makes sense.

(e) Determine the desired maximum or minimum value by the calculus

techniques discussed in Sections 77 through 77.

Section 3.8 Newton’s Method . .................. ... ......... 164

-
-

28. Newton’s method for approximating the zeros of a function (#4873

Let f(c) =0, where f is differentiable on an open interval containing c.

Then, to approximate ¢, use the following steps.

(a) Make an initial estimate x| that is close to c. (A graph is helpful.)
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(b) Determine a new approximation

f(zn)

kT f(@n)

(c) If |z, — xp1] is within the desired accuracy, let x,, 1| serve as the

final approximation. Otherwise, return to Step 2 and calculate a new

approximation.

Each successive application of this procedure is called an iteration (£ 4X.).

169

29. Fixed-point Convergence Theorem (B & Bl s € )  Suppose
that the function ¢ has a fixed point (Bl ) ¢, i.e. ¢ = g(c) and

that there is a number o such that

(i) g is continuous in [c — a, ¢ + @,
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(ii) g is differentiable in (¢ — a, ¢ + ),
(iii) |¢'(z)| < M < 1 for every x in (¢ — a, c + ).
Then c is the only fixed point of g in (¢ — a, ¢ + «) and the sequence

{x,} generated by the fixed-point iteration x, 1 = g(xy,) converges to

c for every choice of 1 in (c —a,c+ Q). 179

30. Sufficient condition for convergence of Newton’s Method A

condition sufficient to produce convergence of Newton's Method to a zero

(x = ¢) of f(x) is that

f'(@))? = fl2)f"(z)| _ |f<a?)f”(af)
f'(@)]?

< 1, r € (c—a,cta).
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31. Differentials Let y = f(x) represent a function that is differ-

entiable on an open interval containing x. The differential (%) of

x (denoted by dx) is any nonzero real number. The differential of y

(denoted by dy) is

32. Differential formulas (#% 23 Let v and v be differ-

entiable functions of .

Constant multiple: d|cu| = cdu

Sum or difference: dju + v] = du + dw

Product: dluv] = udv +vdu
1 [E} B vdu — udv

Quotient:

(V) 112
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