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Chapter 1

LIMITS AND THEIR PROPERTIES

1.1 Summary

Section 1.2 Finding limits graphically and numerically ...... 16

1. Common types of behavior associated with nonexistence of a limit

(a) f(z) approaches a different number from the right side of ¢ than it

approaches from the left side.
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(b) f(x) increases or decreases without bound as x approaches c.

(c) f(x) oscillates between two fixed values as x approaches c.

2. Limit (#IR) Let f be a function defined on an open interval contain-

ing ¢ (except possibly at ¢) and let L be a real number. The statement

lim f(x) =1L

XT—C

means that for each € > (0 there exists a 0 > 0 such that if

0<|r—c|<d, then |f(x)—L|<e.
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3. Some basic limits (—2 X A 4ER) Let b and ¢ be real numbers

and let n be a positive integer. 1. lim, .b=0 2. limy—.x=c

3. Imp e = 42

4. Properties of limits (&R 65 H) Let b and ¢ be real numbers,

let n be a positive integer, and let f and g be functions with the following

limits.

lim f(x)=L and limg(z)=K

LT—C I—C
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1. Scalar multiple:  limg,—.|[bf(x)] = bL

2. Sum or difference: limg—[f

3. Product: limg—c|f(z)g(x)) =LK
. . flx L
4. Quotient: limy e —, provided K # 0
g(x) K’
5. Power: limg—¢|f(x)]" = L"
5. Limits of polynomial and rational functions If pis a poly-

nomial function and c is a real number, then

lim p(z) = p(c).

IT—C

If r is a rational function given by r(z) = p(x)/q(z) and c is a real
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number such that ¢(c) # 0, then

%iincr(x) =r(c) = %
................................................................. 53
6. The limit of a function involving a radical Let n be a posi-

tive integer. The following limit is valid for all c if n is odd, and is valid

forc > 0 if n is even.

lim ¥z = e

Xr—C

7. The limit of a composite function (4 5% #) If f and g are
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functions such that limy_..g(x) = L and lim,_,, f(z) = f(L), then

lim f(g(a)) = f (lim g(x)) = F(L).
................................................................. 56
8. Limits of trigonometric functions (= A & #) Let ¢ be a real

number in the domain of the given trigonometric function.

1. lim, ,.sinz =sinc 2. limy_..cosxz =cosc 3. lim,_,.tanx = tanc

4. lim,_,.cotx =cote b. limy_.secx =secec 6. limy_,.cscx = cscce

59

9. Functions that agree at all but one point Let ¢ be a real
number and let f(x)

g(x) for all x # ¢ in an open interval con-

taining c. If the limit of g(x) as x approaches c exists, then the limit of

f(x) also exists and limgz—,. f(z) =limg—eg(x). .ot 60
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10. A strategy for finding limits (K A&IR 8% %)

(a) Learn to recognize which limits can be evaluated by direct substitution.

(These limits are listed in Theorems 1.1 through 1.6.)

(b) If the limit of f(x) as x approaches ¢ cannot be evaluated by direct
substitution, try to find a function g that agrees with f for all x other

than £z = c.

(c) Apply Theorem 1.7 to conclude analytically that

lim f(x) = lim g(x) = g(c).

r—C X—C

(d) Use a graph or table to reinforce your conclusion.
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12.

13.

all = in an open interval containing ¢, except possibly at c itself, and if
limy_—ch(x) = L = limgz—,c g(x) then lim,_,. f(x) exists and is equal
to L.

A theorem which allows the computation of the limit of an expression by

trapping the expression between two other expressions which have limits

that are easier to compute........ ... ... .. ... 73
. |
1. limy g ee = 1 2. limy g 0 75
x x
Section 1.4 Continuity and one-sided limits.................. 81

Continuity at * = ¢ can be destroyed by any one of the following condi-

tions.

1. The function is not defined at x = ¢. 2. The limit of f(x) does
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14.

15.

not exist at x = ¢. 3. The limit of f(x) exists at x = ¢, but it is not
equal to f(C). oo 84

Continuity Continuity at a point: A function f is continuous

(3£ 47) at c if the following three conditions are met.
1. f(c) is defined. 2. limy_—. f(x) exists. 3. limy— f(x) = f(c)

Continuity on an open interval: A function is continuous on an open

interval (a, ) if it is continuous at each point in the interval. Continuity
on R: A function that is continuous on the entire real line (—o0, 00) is

everywhere continuous (BIR3E4E). ....... ..., 85

Discontinuities fall into two categories: removable (7T # %)

and nonremovable (R T #K).
A discontinuity at c is called removable (7T #%F&) if f can be made

continuous by appropriately defining (or redefining f(c)). .......... 86
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16. Greatest integer function (R X #H X&) | x|
| x| = greatest integer n suchthatn <wx. ........................ 97

17. The existence of a limit Let f be a function and let ¢ and L

be real numbers. The limit of f(z) as x approaches c is L if and only if
(z)=L and lim, , +f(x)=L..................... 97

lim,,_, .~ f

18. Continuity on a closed interval A function f is continuous

on the closed interval |a, 0] if it is continuous on the open interval
(a, b) and
lim f(x)= f(a) and lim f(z)= f(b).
r—at r—b~
The function f is continuous from the right (&3 47) at a
and continuous from the left (£3&%)atb..................... 98
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19. Properties of continuity If bis a real number and f and g are

continuous at x = ¢, then the following functions are also continuous at

C.

(a) Scalar multiple: bf
(b) Sum or difference: f =+ g
(c)
(d)

c) Product: fg

d) Quotient: § if g(c) #0

20. The following types of functions are continuous at every point in

their domains.

(a) Polynomial: p(z) = apz” + ap_12" 1+ - + a1z + aq
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(b) Rational: r(x) = @ q(x) #0
(c) Radical: f(z) = {Vx

(d) Trigonometric: sinx, cosx, tanx, cot x, secx, cscx

................................................................ 107
21. Continuity of a composite function (& %) If ¢ is con-
tinuous at ¢ and f is continuous at g(c), then the composite function
given by (fog)(z) = f(g(x)) is continuous at c. ................. 108
22. The Intermediate Value Theorem (¥ FH 44 3%) If fis con-

tinuous on the closed interval |a, b|, f(a) # f(b), and k is any number
between f(a) and f(b), then there is at least one number ¢ in |a, b] such

that

flc) =k.
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23.

A theorem verifying that the graph of a continuous function is connected.
115

Section 1.5 Infinite limits .............. ... ... ... ... L. 122
Infinite limit (& % #&R) Let f be a function that is defined at

every real number in some open interval containing ¢ (except possibly at

c itself). The statement

Jin o) = ox

means that for each M > 0 there exists a 6 > 0 such that f(x) > M

whenever 0 < |x — ¢| < . Similarly, the statement

lim f(x) = —o0

r—C

means that for each NV < 0 there exists a 0 > 0 such that f(x) < N
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24.

25.

whenever 0 < |z — ¢| < 4.
To define the infinite limit from the left (# % £ #&IR ), replace 0 <
lz—c| < d by c—d < x < c. To define the infinite limit from the right

(#2535 HA&IR), replace 0 < |t —¢|<dbyc<z<c+d.......... 126
Vertical asymptote If f(x) approaches infinity (or negative infin-
ity) as x approaches ¢ from the right or the left, then the line x = c is a
vertical asymptote (& #¥14%) of the graph of f............. 131
Vertical asymptotes Let f and g be continuous on an open

interval containing c. If f(c) # 0, g(c) = 0, and there exists an open
interval containing ¢ such that g(x) # 0 for all  # ¢ in the interval,
then the graph of the function given by

hiz) = %
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has a vertical asymptote (& #HR)atrc=c................ 132

26. Properties of infinite limits Let ¢ and L be real numbers and

let f and g be functions such that

lim f(x) =00 and lim g(x)= L.
r—C r—C

(a) Sum or difference: lim,_.[f(x) + g(x)] = 00
(b) Product:

lim [f()g(a)] = 00, L >0
lim [f()g(a)] = —o0, L <0
(c) Quotient: limxﬁc% =0

Similar properties hold for one-sided limits and for functions for which
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the limit of f(x) as x approaches c is —oc
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limit(s) &R
basic A A,
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evaluating 3+
direct substitution & B4X3%,
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infinite #& %5 |13

from the left and from the right #£
ZigAeit A, 13
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5
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strategy for finding F & & %,
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nonexistence of a limit, common types

of behavior X & &% LA,

of a function involving a radical & nonremovable discontinuity F ¥ #%
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removable discontinuity T # M Z 3
g 0
removable T #%F:, 9

- ' Z I8 X % Coe
polynomial function % 28 & & some basic limits — 3t & KRR

open interval Bf & H

continuous on # 4% 9

limit of &k, Squeeze Theorem & 3% € 32,
properties - H strategy for finding limits K A&R &
of continuity i# 45, 11 F ok
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of limits #&FK,

Theorem & 3%
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Two special trigonometric limits {8l Ri& % discontinuity

Bkt = AR EAER, 5

I T # nonremovable, |9

two special trigonometric limits ™18 ST # removable, [9)

Bkt = AR B AER, 5

vertical asymptote ¥ & &7 U &%
15

zero of a function H# 65 XAR

approximating il

Intermediate Value Theorem % R

fhise 3 (12

14|

P 44 € 22 Intermediate Value The-

orem, |12
— b K #ER some basic limits,
= AR trigonometric function(s)
&R limit of, 6
= #% 4% removable, 9
[ % PR X JF & M removable dis-
continuity, 9

AT A% Z JEiE M nonremovable % AR R polynomial function

discontinuity, [9

&R limit of,
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& ¥ Squeeze, A BB’ on a closed interval, 10
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# % of continuity, [11 # 4 continuous, 9
2 22 4R of infinite limits, [15 f£cEatc 9
#&IR of limits, £—FBHEH (a,b) on an open in-
& B I vertical asymptote, (14, terval (a,b), 9
LM B H [a,b] on the closed inter-
RN > RBEEEER radical, limit of a val [a, b], [10
function involving a, 3| & everywhere, 9
HARAEER basic limits, Wk %A A% from the left and
i# 4 continuity from the right, [10

& m % of a composite function, # K ¥ # & greatest integer func-
tion, [10




INDEX

24

& 35 4R infinite limit(s), 13
MH properties of, [15

W k% e A % from the left and
from the right, [13

Bl & M open interval
i# %% continuous on, |9
&R limit
4547 BB X nonexistence of a

limit, common types of behavior,

il
#&IR [imit(s)
= A & # of trigonometric func-
tions, [0

% A\, Ao A 3 R ¥ of polyno-
mial and rational functions,
A Ae bk existence of, [10
& r R # of a composite function,
B HF 2K 69 = A R B two special
trigonometric,
€ & definition of,
MEE properties of,
#H 3 evaluating
B 3EAK I direct substitution,
R X R F of a function involving a
radical,




INDEX

K K basic,
F R % strategy for finding,
# 22 infinite, 13
MH properties of, [15
P & 3% Fa it A 3% from the left and

from the right, |13

& K K AR approximating zeros
¥+ ] 45 € 22 Intermediate Value The-

orem, (12

i asymptote(s)
$ 14 vertical, [14




	Limits and Their Properties
	Summary

	Index

