1. Find the following limit. (If the limit does not exist or has an infinite limit, you should point it out) (12\%)
(a) $\lim _{x \rightarrow 3} \frac{x^{2}+14 x-51}{x^{3}-5 x^{2}+4 x+6}$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}$
(c) $\lim _{x \rightarrow 0} x\left(\cos 2 x+\cos \frac{1}{x}\right)$
(d) $\lim _{x \rightarrow 2} \frac{2 x+6}{x-2}$
2. Determine all values of the constant a such that the following function is continuous at $\mathrm{x}=0$. (8\%)

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}
a^{2}-2, & \mathrm{x}<0 \\
\frac{a x}{\tan x}, & \mathrm{x} \geq 0
\end{array}\right.
$$

3. Proof that there is only one intersect point between $f(x)=5 x^{3}+2 x^{2}+4 x+1$ and $g(x)=2 x^{2}+\cos x$. (Hint: use the mean value theorem) (10%)
4. Remember that you can solve the derivative using the definition or the differentiation rule for the following question. (12\%)
(a) Given $f(x)=\frac{x}{(x+1)(x+2) \ldots(x+2021)}$, what is the value of $f^{\prime}(0)$?
(a) Find the derivative of $f(x)=\frac{x^{3}+5 x+3}{x^{2}-1}$
(b) Find the derivative of $f(x)=\sin (\sqrt{\cot (5 \pi x)})$
(c) Find the following limit. $\lim _{x \rightarrow 0} \frac{\sin (\sqrt{3+x})-\sin (\sqrt{3})}{x}$
5. Given $x^{2} y^{3}-5 x y^{2}-4 y=4$, find the tangent line at $(3,2) .(10 \%)$
6. Let $f(x)=\frac{2 x^{2}}{x^{2}-1}(10 \%)$
(a) Find the critical numbers and the possible points of inflection of $f(x)$
(b) Find the open intervals on which f is increasing or decreasing
(c) Find the open intervals on which f is concave upward or concave downward
(d) Find all the asymptotes (Both vertical and horizontal)
(e) Sketch the graph of $f(x)$
7. Prove that $|\tan x-\tan y| \geq|x-y|$ for all $x, y \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. (Hint: use the mean value theorem) (10\%)
8. (12\%)
(a) $\int \frac{1+x+x^{2}}{\sqrt{x}} d x$
(b) $\int 6 \mathrm{t}-\csc ^{2} \mathrm{t} d \mathrm{t}$
(c) Evaluate $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}\right)$ (Hint: use Riemann sum and the definition of the definite integral)
(d) $\int_{-\pi}^{\pi} \frac{x^{3} \cos x}{1+x^{4}} d x$
9. Find $\frac{d}{d x} \int_{2 x}^{x^{2}} \cos \sqrt{t} d t$ when $x>0$. (Hint: Let Let $F(x)=\int_{1}^{x} \cos \sqrt{t} d t$ and use the fundamental theorem of calculus) (8%)
10. Evaluate $\int_{1}^{2} 2 x^{2} \sqrt{x^{3}+1} d x$. (8\%)
